
December 2004

N163538
VERITAS Replication Exec™
version 3.1 for Windows

srTool Reference Guide

Disclaimer

The information contained in this publication is subject to change without notice. VERITAS Software
Corporation makes no warranty of any kind with regard to this manual, including, but not limited to,
the implied warranties of merchantability and fitness for a particular purpose. VERITAS Software
Corporation shall not be liable for errors contained herein or for incidental or consequential damages
in connection with the furnishing, performance, or use of this manual.

Copyright

Copyright © 2004 VERITAS Software Corporation. All rights reserved. VERITAS is a registered

trademark of VERITAS Software Corporation in the US and other countries. The VERITAS logo and

VERITAS Storage Replicator are trademarks of VERITAS Software Corporation. All other trademarks

or registered trademarks are the property of their respective owners.

VERITAS Software Corporation

1600 Plymouth St.

Mountain View, CA 94043

Phone 650–335–8000

Fax 650–335–8050

www.veritas.com

ii srTool Reference Guide

Preface

Document Release Notice
This revision (3.1) of the srTool Reference Guide addresses minimal changes to the srTool
utility. These changes are as follows.

◆	 The product of which srTool is a feature has changed names. VERITAS Storage
Replicator (VSR) is now VERITAS Replication Exec (VRE).

◆	 An additional six error messages have been added to the Client Interface Messages
(see “High-Level Client Interface Messages” on page 206).

Additional features have been added to VERITAS Replication Exec version 3.1 as follows.

◆	 Backup Exec SmartLink is a command line utility that adds replication job monitoring
and alerting capability to VERITAS Backup Exec version 10.0. This feature is
documented in the VERITAS Replication Exec version 3.1, Backup Exec SmartLink
Reference Guide.

◆	 VERITAS Replication Exec version 3.1 now supports clustering of the Job Agent and
Replication Management Server (RMS) using VERITAS Cluster Server and Microsoft
Cluster Server. These features are documented in the VERITAS Replication Exec version
3.1, Clustering Reference Guide.

◆	 Refer also to the VERITAS Replication Exec version 3.1 Readme file for additional
changes to the srTool utility and Replication Exec.
iii

What You’ll Find in this Guide
What You’ll Find in this Guide

Chapter 1. “Introduction” on page 1

Provides an overview of srTool and a summary of changes in srTool for VERITAS
Replication Exec.

Chapter 2. “Getting Started Using srTool” on page 11

Demonstrates the power of srTool to automate the control and configuration of
replication Jobs through a series of practical examples.

Chapter 3. “Language Reference” on page 23

Provides a description of the command language of srTool, including the srTool
command, output redirection, basic command syntax, data types, constants (literals),
variables, expressions, flow control, functions, macros and embedded commands,
object reference, and object specifications.

Chapter 4. “srTool Command Reference” on page 73

Provides a detailed description of srTool’s commands, including syntax, aliases,
required and optional parameters, and examples. The command reference is
presented in alphabetical order.

Chapter 5. “srTool Object Reference” on page 135

Describes in detail each of srTool’s objects, including their discovery, properties, and
examples for adding, changing or deleting them. The objects reference is presented in
alphabetical order.

Appendix A. “Messages and Troubleshooting” on page 187

Provides a description of the various errors and messages of srTool, as well as
troubleshooting solutions.
iv srTool Reference Guide

Getting Help
Getting Help
VERITAS offers you a variety of support options.

Accessing the VERITAS Support Web Site

The VERITAS Support Web site allows you to:

◆ contact the VERITAS Support staff and post questions to them

◆ get the latest patches, upgrades, and utilities

◆ view the Replication Exec Frequently Asked Questions (FAQ) page

◆ search the knowledge base for answers to technical support questions

◆ receive automatic notice of product updates

◆ find out about Replication Exec training

◆ read current white papers related to Replication Exec

The address for the VERITAS Support Web site is:

http://support.veritas.com

Replication Exec Documentation Set
The srTool Reference Guide is part of the VERITAS Replication Exec (VRE 3.1) documentation
set, which consists of the following references.

Document Title Description

Replication Exec Administrator’s The Replication Exec Administrator’s Guide in Adobe Acrobat

Guide format.

(vreadmin_en.pdf)

Replication Exec Help files Accessible as standard Windows help files from the Replication
(vreadmin_en.chm) Exec software.

srTool Reference Guide The srTool Reference Guide in Adobe Acrobat format.
(srtool_en.pdf)

srTool Help files Accessible with any html browser and located on the VRE
(srtool_en.chm) CD-ROM.
Preface v

Conventions
Conventions
The following conventions apply in this manual.

Syntax Conventions
The syntax conventions used in this document are as follows.

Convention Description

{required} ◆ Anything in curly brackets must be specificed.

[optional] ◆ Anything in square brackets is optional.

x | y ◆	 A vertical bar indicates a choice of syntax elements; for example “x”
or “y”.

... ◆	 Elipses indicate the preceding syntax element can be repeated any
number of times.

Typographical Conventions
The typographical conventions used in this document are as follows.

Convention Description

Keyword ◆ Used to depict srTool keywords (reserved words) and operators.

Placeholder ◆	 Used for for placeholder text, book titles, new terms, or emphasis.
Replace placeholder text with your specific text. For example:
Replace filename with the name of your file.

◆	 Used for expressions, variables and parameters, except Keywords
and Commands.

Command ◆	 Used to show commands specific to the command line interface:

The stop command stops all functions at this point.

User Input ◆	 Used to show data to be input by the user or examples:

create 4 jobs

Path Name ◆	 Used to show path names or path name variables:

Move to the following file: C:\Program Files\VRE\widget.exe
vi srTool Reference Guide

Conventions
Tips, Notes, and Cautions
Tips, notes, and cautions are used to emphasize information. The following samples
describe when each is used.

Tip Used for nice-to-know information, such as a shortcut.

Note	 Used for important information that you should know, but that should not cause
any damage to your data or your system if you choose to ignore it.

Caution	 Used for information that will prevent a problem. Ignore a caution at your own
risk.
Preface vii

Conventions
viii srTool Reference Guide

Contents

Preface . iii

Document Release Notice . iii

What You’ll Find in this Guide . iv

Getting Help .v

Replication Exec Documentation Set .v

Conventions . vi

Syntax Conventions . vi

Typographical Conventions . vi

Tips, Notes, and Cautions .vii

Chapter 1. Introduction .1

Upgrading from Prior Versions . 1

Current Documentation . 1

User Proficiency . 1

Summary of Changes to srTool for VRE 3.1 . 2

Data Types . 2

Constants (Literals) . 2

Variables . 3

Expressions . 4

Object Specifications . 4

Execution Control Structures . 4

Functions . 5

Macros and Embedded Commands . 5

Commands . 5

ix

New Commands . 5

Changed Commands . 6

Objects . 6

Prior Object Hierarchy . 7

Changed Objects . 8

New Objects . 8

srTool Help . 9

Launching the srTool Utility . 9

Chapter 2. Getting Started Using srTool . 11

Creating and Modifying Replication Jobs . 12

Example 1. Create a Standard (One-to-One) Job . 12

Example 2. Create a Centralization (Many-to-One) Job . 14

Example 3. Modify the Centralization (Many-to-One) Job . 16

Example 4. Create a Publication (One-to-Many) Job . 18

Monitoring, Querying and Reporting Job Status . 20

Example 5. Monitor Jobs . 20

Example 6. Query for Server Storage Information . 21

Example 7. Groom/Read/Summarize Logs and Alerts . 22

Chapter 3. Language Reference . 23

Starting srTool . 23

Command Line Syntax . 23

Required Parameters . 23

Optional Parameters . 23

Basic Command Syntax . 26

Command Summary . 27

Object Discovery, Creation, Deletion and Changing Commands 27

Server-Specific Commands . 27

Job-Specific Commands . 27

SelectionRule (selRule)-Specific Commands . 28

x srTool Reference Guide

Flow Control Commands . 28

Other Commands . 28

Output Redirection . 30

Data Types . 32

Converting Between Different Data Types . 33

Converting a String into a Blob . 34

Converting a String into a UniqueID . 34

Converting a String into a DateTime . 35

Converting a String into a TimeSpan . 36

Constants (Literals) . 38

string . 38

blob (byteArray) . 39

uniqueID . 39

uint32 . 40

uint64 . 40

float . 40

‘as’ operator . 40

Variables . 41

Syntax . 41

Execution Contexts . 41

Variable Discovery . 42

Creating Variables . 42

Changing Variables . 42

Deleting Variables . 42

Built-in Variables . 43

Global Variables . 46

Parameter Variables . 49

Expressions . 50

Terms . 51

Factors . 52

Contents xi

Operators . 54

Property Specifications . 55

Functions . 57

Macros and Embedded Commands . 63

Macros . 63

Embedded Commands . 63

Objects . 64

srTool Object Hierarchy . 64

Root-Level Objects . 65

Discovering Objects . 65

Creating New Objects . 66

Deleting Objects . 66

Object Properties . 66

Access Types . 66

Querying Property Values . 67

Modifying Property Values . 67

Discovering Properties . 67

Object Specifications . 67

Grouping Specifications . 68

Indexing Specifications . 70

SortedBy Clause . 71

Whose Clause . 71

Compound Object Specifications . 72

Chapter 4. srTool Command Reference . 73

add command . 73

begin command . 76

break command . 77

call command . 78

cancel command . 80

xii srTool Reference Guide

check command . 81

comment command . 83

configure command . 83

continue command . 85

count command . 86

delete command . 87

demote command . 88

disable command . 89

dump command . 90

echo command . 92

else command . 93

elseif command . 94

enable command . 95

end command . 96

exec command . 97

flush command . 100

function command . 100

global command . 103

help command . 104

if command . 105

list command . 106

loop command . 108

monitor command . 112

pause command . 114

promote command . 114

quit command . 115

resume command . 116

select command . 117

set command . 118

shell command . 120

Contents xiii

shift command . 121

show command . 122

spawn command . 124

start command . 127

stop command . 128

use command . 129

wait command . 131

xml command . 133

Chapter 5. srTool Object Reference . 135

Alert Objects . 135

Credential Objects . 137

DestinationRule Objects . 138

File Objects . 140

FileReplicationJob Objects . 142

Folder Objects . 146

Item Objects . 148

License Objects . 149

LogEntry Objects . 151

ObjectKind Objects . 153

PathRule Objects . 154

Property Objects . 156

ReplicationPair Objects . 157

RMS Objects . 161

Script Objects . 164

SelectionRule Objects . 166

Server Objects . 168

SourceServer Objects . 171

SubFile Objects . 174

SubFolder Objects . 176

xiv srTool Reference Guide

SubItem Objects . 178

TargetServer Objects . 180

Volume Objects . 183

Appendix A. Messages and Troubleshooting .187

Shared Classes Library Messages . 188

High-Level Client Interface Messages . 206

srTool Messages . 243

Index .281

Contents xv

xvi srTool Reference Guide

Introduction
1

srTool is a powerful complement to VERITAS Replication Exec (VRE 3.1) that allows users
to automate the control and configuration of a replication system.

srTool:

◆ provides a command-line interface for detailed scripting of replication tasks

◆ extends capabilities beyond the limits of the VRE graphical user interface

◆ greatly simplifies otherwise tedious object-by-object tasks

◆ extends diagnostic functionality through monitoring of replication activity

Upgrading from Prior Versions
If you are running scripts generated under prior versions of srTool be sure to thoughly
review the “Summary of Changes to srTool for VRE 3.1” on page 2.

Note	 Changes to VRE 3.1 may cause srTool scripts that worked under previous releases
to either stop working or work unpredictably.

Current Documentation
While this reference guide describes the command language and operation of srTool, this
product may undergo periodic or last-minute changes. For the most current
documentation for srTool, see the Readme file and online help accompanying the srTool
software.

For information on the functionality and operation of VRE 3.1, see the VERITAS
Replication Exec (VRE 3.1) Administrator’s Guide.

User Proficiency
This reference guide assumes the user is proficient in using Replication Exec, Windows
Command Interpreter, and network administration.
1

Summary of Changes to srTool for VRE 3.1
Summary of Changes to srTool for VRE 3.1
VERITAS Replication Exec (VRE 3.1) is an important milestone in the technical evolution of
VERITAS' file replicator for Windows-based servers. Its command-line utility, srTool, has
also undergone substantial changes. Some essential improvements to VRE 3.1 necessitated
the change of various aspects of the command language and constructs used in the srTool
utility.

Caution	 Please review this Reference thoroughly. Some of the changes to srTool will cause
srTool scripts that worked under previous releases to either stop working or
work unpredictably.

This summary provides an overview of changes made in VRE 3.1, and provides users the
opportunity to determine whether their existing scripts will need to be altered to function
properly with VRE 3.1.

Following are the significant changes in srTool's command language for VRE 3.1.

Data Types
◆	 The boolean, enum and path data types have been eliminated. The functionality of

the boolean and enum types has been replaced by the uint32 type. Both keywords
still exist and are now aliases for uint32.

◆	 The data type formerly called count is now called uint32. The keyword count still
exists, and is an alias for uint32.

◆	 The data type formerly called count64 is now called uint64. The keyword count64 still
exists, and is an alias for uint64.

◆	 A new data type has been introduced called blob or byteArray, which is used for
storing an ordered string of bytes of arbitrary length.

◆ srTool is now much more effective at converting one data type into another.

See “Output Redirection” on page 30 for additional information.

Constants (Literals)
◆	 In VRE 3.1, string literals can only be specified with quotation marks. Unquoted

alphanumeric names that aren't keywords or property names are assumed to be the
names of shell variables, which can store data values of any permissible type (string,
TimeStamp, timespan, guid, uint64, float, and so on).
2 srTool Reference Guide

Summary of Changes to srTool for VRE 3.1
Prior versions of srTool allowed string literals to be specified undelimited, which
made it difficult, if not impossible, for srTool to distinguish between a variable and a
string literal. This is why srTool relied on the use of a crude macro replacement when
using the value of a variable.

Note	 Scripts that use unquoted string literals will no longer work and must be changed.
Anything in quotes is case sensitive by default unless this option is changed by the
user.

Old Syntax New Syntax

list every job whose description
startsWith A

list every job whose description
startsWith "A"

list job Foo list job "Foo"

add job with name = Foo, type =
OneToOne

add job with name = "Foo", type =
OneToOne

set jobName = "The Job"
list job %jobName

jobName = "The Job"
list first job whose name eq
jobName

◆ Character escape capability has been added to string literals.

It was difficult in prior versions of srTool to compose a string that contained double
and single quotation marks along with tab, newline and certain other characters.

New Syntax

"One\tTwo\t\"Buckle My Shoe\"\tThree\tFour\n"

'Mr. Smith\'s Vacation'

"\\\\MACHINE\\C$\\WINNT\\SYSTEM32"

See “Constants (Literals)” on page 38 for additional information.

Variables
◆	 Variables now have scoping rules. By default, the scope of a newly created variable

terminates when the execution context in which it was created terminates.

◆	 Variables now have access attributes. By default, a newly created variable is always
writeable. Certain predefined shell variables are read-only and their values cannot be
changed.
Chapter 1, Introduction 3

Summary of Changes to srTool for VRE 3.1
See “Variables” on page 41 for additional information.

Expressions
◆	 Expressions are now accepted in commands anywhere constant literals were

previously accepted.

See “Expressions” on page 50 for additional information.

Object Specifications
◆ Object specifications are now grouped or indexed.

◆	 Indexed object specifications are now zero-based instead of one-based. That is,
job 0 refers to the first job, and job 1 refers to the second job.

Old Syntax New Syntax

list job 1 list job 0
...or...
list first job

Note	 srTool Scripts that use indexed object specifications will no longer work as
expected and will have to be changed.

◆	 Indexed object specifications can now include any number of index ranges. Thus, you
can refer to logEntries 0 thru 199, 300 thru 399.

◆	 Grouped object specifications can now restrict both the size and relative position of
the group, for example, first 20, last 100, any 5, every, all, middle, and so on As in
prior versions, they can incorporate a filter by using a whose clause.

See “Object Specifications” on page 67 for additional information.

◆	 Specifying ordinal values for property identification is no longer supported. Only
property names may be specified. See “Property Specifications” on page 55.

Execution Control Structures
Changes made to the execution control structures consist of four new constructs added to
the loop command. The loop command now supports the following additional
constructs:

◆ loop a specificed number of times

◆ loop through a range
4 srTool Reference Guide

Summary of Changes to srTool for VRE 3.1
◆ loop through a list

◆ loop over objects resulting from compound object specifications

See “loop command” on page 108.

Functions
Functions are a new feature to VRE 3.1. Functions are used in expressions, include several
built-in functions, and provide for user-defined functions. See “Functions” on page 57 for
additional information.

Macros and Embedded Commands
The macros and embedded commands are essentially unchanged from prior release of
srTool. However, the reliability and capabilities of macros and embedded commands have
been enhanced. See “Macros and Embedded Commands” on page 63.

Commands
VRE 3.1 introduces several new commands, changes several commands (some
substantially), and eliminates a few commands that are no longer needed. See “srTool
Command Reference” for in-depth command descriptions and functionality.

New Commands

There are two new commands in this version of srTool.

New Commands Description See...

Configure Allows you to control certain tunable parameters of the
client interface

page 83

Spawn Executes scripts or commands in the background page 124
Chapter 1, Introduction 5

Summary of Changes to srTool for VRE 3.1
Changed Commands

The changed commands in srTool are indicated in the following table.

Changed
Commands

Description See...

Call The maximum nesting level of called command shells
has been increased to 32 from 12.

page 78

Enable, Disable The Enable and Disable commands now only
apply to server objects.

page 95 and
page 89

IsSelected The IsSelected command is now the Check
command.

page 81

List, Get The functionality of the get command has been
merged into and is now an alias of the list command.
Functionality of the list command includes:

◆ restricting the displayed properties to a specific set
and display order

◆ displaying the property data in a non-tabular
format using optional user-defined field and record
delimiters

◆ displaying property data of type string, dateTime
or timespan in quotes

The command also retains its original functionality,
including:

◆ displaying all properties by default, or all but a
specific set of properties

◆ displaying property data unquoted in a neat
columnized table

◆ optionally displaying column headings

The syntax rules regarding use of the 'of' keyword
between the property list and the object specification
have been relaxed.

page 106

Objects
srTool's hierarchy of objects has changed. Significant changes to srTool’s objects are as
follows.

◆	 Some objects previously available at the root level can now only be found at their
appropriate place in the object hierarchy. These include ReplicationPairs, PathRules,
SelectionRules, and DestinationRules.
6 srTool Reference Guide

Summary of Changes to srTool for VRE 3.1
◆ Abbreviations and plural forms of some object names have been added.

Prior Object Hierarchy

Following is the prior (older) Object Hierarchy. See “srTool Object Hierarchy” on page 64
for the current Object Hierarchy.

Note	 Please review these hierarchies carefully as the changes may warrant significant changes in
scripts written under prior verisons of srTool.

Server
Volume

Folder
Folder
File

LogEntry
FileReplicationJob

ReplicationPair
LogEntry

PathRule
SelectionRule
DestinationRule

LogEntry
SourceServer
TargetServer

Alert
Credential
ReplicationPair
PathRule
SelectionRule
DestinationRule

See also “srTool Object Hierarchy” on page 64.
Chapter 1, Introduction 7

Summary of Changes to srTool for VRE 3.1
Changed Objects

Note	 VRE 3.1 incorporates many changed objects. Some objects have entirely new
properties, some have lost properties, and some have property name or data type
changes. Please review the individual objects’ definitions and functionalities to
determine any changes that may be required to srTool scripts written under prior
versions.

New Objects

The following new objects have been added to srTool for VRE 3.1.

New Objects Description See...

License Licenses are objects that represent actual licenses that
are installed on a server. See “License Objects” on
page 149.

page 149

ObjectKind An ObjectKind is a meta object that describes srTool
objects. See “ObjectKind Objects” on page 153.

page 153

Property A Property is a meta object that describes the
properties of objects. See “Property Objects” on
page 156.

page 156

rms An RMS is a Replication Management Server that is
designated to manage replication jobs on the network.
The RMS contains a database that stores information
about Jobs, Servers and Alerts. See “RMS Objects” on
page 161.

page 161

script Script objects inform the replication system what
special program to run when some special event occurs
on either the Source or Target, such as when
synchronization has been achieved. See “Script
Objects” on page 164.

page 164

subfile SubFile objects are files that represent any file on a
server. See “SourceServer Objects” on page 171.

page 174

subfolder SubFolders are directories inside volumes on any given
server. See “SubFolder Objects” on page 176.

page 176

subitem SubItems are folder or file objects, which allow the user
to obtain both in a single query. See “SubItem Objects”
on page 178.

page 178
8 srTool Reference Guide

srTool Help
srTool Help
srTool's help command relies on the Windows Explorer shell application
(explorer.exe) to open srTool's online documentation. The online documentation is
stored in a compiled help file (srTool.chm) on the local host machine and is opened
using Microsoft's HTML Help application (hh.exe).

If you start srTool from a service, such as the "at" or "Scheduled Tasks" service, such that it
cannot interact with the Windows desktop, you cannot use the help command.

Note	 srTool help features are available from the VRE 3.1 Administrative Console or by
using the help command. See “help command” on page 104.

Launching the srTool Utility
srTool may be launched in several ways:

◆ by double-clicking the executable file (SRTOOL.EXE) from the directory:

<drive>:\Program Files\VERITAS\Replication Exec\

◆	 by typing in the full path name and including file name in the command prompt
window:

<drive>:\Program Files\VERITAS\Replication Exec\srtool.exe

◆ directly from the Information Desk of the VRE 3.1 Administration Console.
Chapter 1, Introduction 9

Launching the srTool Utility
10 srTool Reference Guide

Getting Started Using srTool
2

This section is intended to demonstrate the power of srTool to automate the control and
configuration of replication Jobs through a series of practical examples.

Note	 Before proceeding with srTool, the user should be familiar with the basic VRE 3.1
operations. Refer to the VERITAS Replication Exec (VRE 3.1) Administrator’s Guide for
a detailed description of storage replication and VRE 3.1’s features.

The following srTool techniques are described in this section.

Creating and Modifying Replication Jobs

◆ “Example 1. Create a Standard (One-to-One) Job” on page 12

◆ “Example 2. Create a Centralization (Many-to-One) Job” on page 14

◆ “Example 3. Modify the Centralization (Many-to-One) Job” on page 16

◆ “Example 4. Create a Publication (One-to-Many) Job” on page 18

Monitoring, Querying and Reporting Job Status

◆ “Example 5. Monitor Jobs” on page 20

◆ “Example 6. Query for Server Storage Information” on page 21

◆ “Example 7. Groom/Read/Summarize Logs and Alerts” on page 22
11

Creating and Modifying Replication Jobs
Creating and Modifying Replication Jobs

Example 1. Create a Standard (One-to-One) Job
Creating a Job in srTool entails creating all of the subpieces of a Job. The minimum items
that must be specified to create a Job are Job name, Job type, pair, path rule, and selection
rule. There are many other properties that can also be specified. If the optional properties
are not specified when creating a Job, the Job uses the default properties.

The goal of this example is to replicate all of the Excel files of the c:\documents folder of
the machine “Accounting” to the d:\backup folder of the target machine
"BackupServer". The creator of this Job must also establish access to the Target machine
before creating the Job pair.

1.	 Run srTool by launching it from the Start menu or VRE 3.1 Administration Console,
or by typing the following in the command prompt window:

<drive>:\Program Files\VERITAS\Replication Exec\srtool.exe

2.	 Create a Job with the name Accounting Data and a Job type of one-to-one
(replicates data from just one server to another server). Enter the following command
to create this Job:

create job with name="Accounting Data", type=OneToOne

3.	 The Job is now created. The next step is to add the user’s credentials to the Target
server, by entering the following:

add credential with serverName = "BackupServer", userName =

"Joe", domain = "Administrative", password = Encrypt ("Joe’s

password")

4.	 The next step is to add a pair to this Job. A pair defines the source and destination for
the data. Enter the following command to create the pair:

add pair to job "Accounting Data" with

sourceserver="Accounting", targetserver="BackupServer"

5.	 You now have a Job and a pair that specifies which machine the data is coming from
and where the data is going. The next step is to create a path rule, which tells the Job
exactly which directory to replicate. Enter the following command to create a rule for
this Job:

add rule to job "Accounting Data" with

sourceserver="Accounting", path="C:\\documents"

12 srTool Reference Guide

Creating and Modifying Replication Jobs
6.	 Specify which files in the c:\documents directory you want to replicate. In this
case, you want to backup all of the Excel files, which have a file extention of .XLS.
The files that will be replicated are selected by creating a selection rule. Enter the
following command:

add selrule to first rule of job "Accounting Data" with

namespec="*.xls"

7.	 The Job is now ready to run and all data will go to the default replication target
directory specified during installation. However, our goal was to replicate these files
to the d:\backup folder of the machine "BackupServer". To do this, run the following
command:

add destrule to first rule of job "Accounting Data" with

targetserver="BackupServer", path="d:\\backup"

Note	 All paths that contain backslashes must use two backslashes, for example
c:\\marketing\\sales\\invoices. Also note the use of quotes for
character strings that were entered. The Job created in this example will inherit
the default schedule, which is open to replication at all times. This Job will
begin replicating data as soon as the Job is created.

8.	 Schedule the Job. For most Job schedules, it may be easier to use the Administration
Console for selecting when the Job should run. In this case, you want the Job to run at
the default schedule, and no schedule changes are required.

9.	 Start the Job by entering the following:

start job "Accounting Data"

Summary

◆	 create job with name="Accounting Data", type=OneToOne
Creates a one-to-one Job with name "Accounting Data".

◆	 add credential with serverName = "BackupServer", userName =
"Joe", domain = "Administrative", password = Encrypt ("Joe’s
password")
This adds Joe’s credentials to access the Target server.

◆	 add pair to job "Accounting Data" with
sourceserver="Accounting", targetserver="BackupServer"
Adds a pair to the Job with source and target machines.

◆	 add rule to job "Accounting Data" with
sourceserver="Accounting", path="C:\\documents"
Adds rule stating what data is to be replicated.
Chapter 2, Getting Started Using srTool 13

Creating and Modifying Replication Jobs
◆	 add selrule to first rule of job "Accounting Data" with
namespec="*.xls"
Add selection rule that specifies what files to replicate (all Excel files in this case).

◆	 add destrule to first rule of job "Accounting Data" with
targetserver="BackupServer", path="d:\\backup"
Defines where the data is to go.

◆	 start job "Accounting Data"
Starts running the Job immediately.

Example 2. Create a Centralization (Many-to-One) Job
Creating a Centralization (many-to-one) Job is very similar to creating a simple (Standard)
Job. The minimum items that must be specified to create a Job include Job name, Job type,
pairs, path rules, and selection rules. There are many other properties that can also be
specified. If the optional properties are not specified when the Job is created, it uses the
defaults.

The goal of this example is to replicate all of the MS Excel files of the c:\documents
folders of 125 Source machines to the d:\backup folder of a single Target machine. The
Source servers from which you are going to replicate are named “Accounting001” through
“Accounting100”, and “Bookkeeping001” through “Bookeeping025”. The Target server is
named “BackupAccounting”. Further, you wish to schedule the Job to run each weekday
(Monday through Friday) from 2100 to 2200 hours.

1.	 Run srTool by launching it from the Start menu or VRE 3.1 Administration Console,
or by typing the following in the command prompt window:

<drive>:\Program Files\VERITAS\Replication Exec\srtool.exe

2.	 Create a Job with the name Accounting Data and a Job type of many-to-one
(replicates data from many Source servers to a single Target server). Enter the
following command to create this Job. Because you will be making many changes to
the Job, the enabled property is set to false (“0”) to prevent it from starting before it
has finished being configured.

create job with name="Accounting Data", type=ManyToOne,

enabled=0

3.	 Because of the large number of Source servers (125), it is much easier to define the
replication pairs, path rules, selection rules and destination rules with a loop
command. This procedure iterates over the list of servers one at a time with these
properties. To do this, enter the following:

loop over all servers whose (name startsWith "Accounting" or

"Bookkeeping") and isAvailable

14 srTool Reference Guide

Creating and Modifying Replication Jobs
add pair to job "Accounting Data" with

sourceServer=propName, targetServer="Backup Accounting"

theRule = ‘add pathRule to job "Accounting Data" with

sourceServer=propName, path="C:\\documents"‘

add selRule to %theRule with nameSpec="*.xls"

add destRule to %theRule with targetServer="Backup

Accounting", path="D:\\backup"

end loop

4.	 You have now created all of the Job properties for the Job Accounting Data. In
order to confirm that all of the Source servers are available for the Job, the
isAvailable server property was also used in the loop.

5.	 Schedule the Job. In this example, you wish to schedule the Job to start each weekday
(Monday through Friday) from 2100 to 2200 hours. The Schedule property is a
byteArray data type, and a bit mask that specifies the Job's schedule. Each bit
indicates "eligible" (1) or "ineligible" (0) to run. Each bit represents a 30-minute time
span. The entire blob must be exactly 336 bits long, thus representing a 7-day
(week-long) schedule. To specify the desired Job schedule, enter the following:

set enable=true, schedule = "0b

000000000000 000000000000 000000000000 000001100000

000000000000 000000000000 000000000000 000001100000

000000000000 000000000000 000000000000 000001100000

000000000000 000000000000 000000000000 000001100000

000000000000 000000000000 000000000000 000001100000

000000000000 000000000000 000000000000 000000000000

000000000000 000000000000 000000000000 000000000000"

for job "Accounting Data"

Note	 In the above entry, each line of bits represents the 48 30-minute time spans
beginning with Monday. In the actual command entry, this string should contain no
blanks spaces or line breaks.

The Job is now fully configured and will automatically start and run at the scheduled
times.

Summary

◆	 create job with name="Accounting Data", type=ManyToOne,
enabled=0
Creates a many-to-one Job with name "Accounting Data".
Chapter 2, Getting Started Using srTool 15

Creating and Modifying Replication Jobs
Note	 Because you will be making many changes to the Job, the enabled property is
set to false (“0”) to prevent it from starting before it has finished being
configured.

◆	 loop over all servers whose (name startsWith "Accounting" or
"Bookkeeping") and isAvailable
Initiates the loop command to identify the available servers whose names begin with
“Accounting” or Bookkeeping”. The property isAvailable indicates the RSA
service is started and the license is valid.

◆	 add pair to job "Accounting Data" with
sourceServer=propName, targetServer="Backup Accounting"
Creates all replication pairs for the Source and Target servers within the loop. The
server name is represented by the variable propName.

◆	 theRule = ‘add pathRule to job "Accounting Data" with
sourceServer=propName, path="C:\\documents"‘
Creates the path rule for the Job and defines the Source directory for each source
server. The variable theRule receives a reference to the newly created pathRule.

◆	 add selRule to %theRule with nameSpec="*.xls"
Creates the selection rule that specifies the data (all .xls files) to be replicated
from the pathRule’s directory on the source server.

◆	 add destRule %theRule with targetServer="Backup Accounting",
path="D:\\backup"
Creates the destination rule that specifies the destination directory for the data
being replicated for the current pathRule.

◆	 end loop
Ends the current Job properties definition loop.

Example 3. Modify the Centralization (Many-to-One) Job
You are now going to modify the Centralization Job in Example 2 to replicate every Excel
file from every volume of every server, as follows.

1.	 The first step to modifying the previously created Job is to delete all of the path rules
from the existing Job. Enter the following:

delete all pathRules of job "Accounting Data"

2. Now you will create another loop to redefine the path rules, as follows:

loop over all servers whose (name startsWith "Accounting" or

"Bookkeeping") and isAvailable

16 srTool Reference Guide

Creating and Modifying Replication Jobs
currentserverName = propName

loop over all volumes of first server whose name EQ propName

add pathRule to job "Accounting Data" with sourceServer=

currentServerName, path = propFullPath

end loop over all volumes

end loop over all servers

3.	 The path rules have now been assigned to each pair. The next step is to add the
selection rules and destination rules for each path rule. Enter the following:

add selRule to all pathRules of job "Accounting Data" with

nameSpec = "*.xls"

add destRule to all pathRules of job "Accounting Data" with

targetServer="Backup Accounting", path = "D:\\Backup"

Summary

◆	 loop over all servers whose (name startsWith "Accounting" or
"Bookkeeping") and isAvailable
Initiates the server loop. Only those servers that are available and have names that
start with “Accounting” or “Bookkeeping” will be considered.

◆	 currentserverName=propName
This copies the “Name” property of the current server being considered into the
temporary variable “currentServerName”. This is done so that the second loop will
also define a “propName” variable (since volumes have names). The server’s name is
needed to create the pathRule in the inner loop.

◆	 loop over all volumes of first server whose name EQ propName
Initiates the volume loop. A pathRule is added for each volume on this server.

◆	 add pathRule to job "Accounting Data" with sourceServer=
currentServerName, path=propFullPath
Creates the pathRule for the current volume. The pathRule property refers to the
volume’s root directory.

◆	 end loop over all volumes
Terminates the volume loop, ensuring that there is one pathRule for each volume
server.

◆	 end loop over all servers
Terminates the server loop, ensuring that at least one pathRule exists for each source
server.
Chapter 2, Getting Started Using srTool 17

Creating and Modifying Replication Jobs
◆	 add selRule to all pathRules of job "Accounting Data" with
nameSpec = "*.xls"
Creates the selection rule that specifies the data (all .xls files) to be replicated from
the pathRule’s directory on the source server.

◆	 add destRule to all pathRules of job "Accounting Data" with
targetServer="Backup Accounting", path = "D:\\Backup"
Creates the destination rule that specifies the destination directory (D:\Backup) for
the data being replicated for the current pathRule.

Example 4. Create a Publication (One-to-Many) Job
Creating a Publication (one-to-many) Job is similar to creating a Centralization
(many-to-one) Job. The minimum items that must be specified to create a Job include Job
name, Job type, pairs, path rules, and selection rules. There are many other properties that
can also be specified. If the optional properties are not specified when creating a Job, the
Job uses the default properties.

The goal of this example is to replicate all of the files from the server “Captain” to the
c:\inetpub folder of all Target machines, using the Job name Newsletter 025. This
Job will also be scheduled to run every day between 10:00 and 11:30 in the morning.

1.	 Run srTool by launching it from the Start menu or VRE 3.1 Administration Console,
or by typing the following in the command prompt window:

<drive>:\Program Files\VERITAS\Replication Exec\srtool.exe

2.	 Create a Job with the name Newsletter 025 of type one-to-many (replicates data
from a single Source server to many Target servers). Enter the following command to
create this Job:

create job with name="Newsletter 025", type=OneToMany

3.	 As in the prior example, you are going to use a loop command to define the Job
properties. In this loop, you specify the Job name and add all available pairs for each
server that is online and available. To do this, enter the following:

loop over every server whose isOnline=1 and isAvailable=1

add pair to first job whose name="Newsletter 025" with

targetserver=propName, sourceServer="Captain"

end

4. In the next step, you add the path rule for the Job

add pathrule to job "Newsletter 025" with

sourceserver="Captain", path="c:\\inetpub"

18 srTool Reference Guide

Creating and Modifying Replication Jobs
5. You are now ready to add the selection rule. . .

add selrule to first rule of job "Newsletter 025" with

namespec="*.*"

6. You are now ready to add the destination rule. . .

add destrule to first rule of job "Newsletter 025" with

targetServer=propName, path="c:\\inetpub"

7.	 In the final step you are going to schedule the Job. To do this you are going to use the
MakeString property, as follows.

day = MakeString ("0", 18) + "111" + Makestring ("0", 27)

week = "0b" + MakeString (day, 7)

set schedule of every job to week

Summary

◆	 create job with name="Newsletter 025", type=OneToMany
Creates a one-to-many Job with name "Newsletter 025".

◆ loop over every server whose isOnline=1 and isAvailable=1

add pair to first job whose name="Newsletter 025" with

targetserver=propName, sourceServer="Captain"

end

Adds all pairs to the Job for all online and available Target machines with the
“Captain” Source server.

◆	 add pathrule to job "Newsletter 025" with
sourceserver="Captain", path="c:\\inetpub"
Adds a rule stating the path from the Source data to the Target directory.

◆	 add selrule to every rule of every job whose name startswith
"Newsletter 025" with namespec="*.*"
Adds selection rule that specifies what files to replicate (all files in this case).

◆	 day = MakeString ("0", 18) + "111" + ("0", 27)
week = "0b" + MakeString (day, 7)
set schedule of every job to week

Defines when the replication Job will start. In this case we created a string of 18 zeros,
followed by three ones and an additional 27 zeros, which represents the 48 half
periods in each day with the period from 10:00 until 11:30 AM being toggled “on”.
This string is then reproduced seven (7) times for each day of the week, and enabled
with the set schedule commands.
Chapter 2, Getting Started Using srTool 19

Monitoring, Querying and Reporting Job Status
Monitoring, Querying and Reporting Job Status

Example 5. Monitor Jobs

1.	 This example shows the 10 most recent alerts, and identifies the objects that generated
them:

select TimeStamp, (name of first objectKind whose ordinalValue

EQ assocObjType) + ' " ' + assocObjName + ' " ', description

from first 10 alerts sortedBy descending timeStamp

2.	 The following example lists all alerts less than four hours old that are either warning
or error messages, but not information alerts.

List severity, timeStamp, OrigServerName, MessageText of all

alerts whose (TimeStamp GT (now() - "4 hours" as Timespan)) and

severity NE Inform

3.	 The following example

List Name, JobState, LastStarted of all jobs

This gives output like the following:

Accounting_01 Completed 2/10/2004 17:23:21.902

Accounting_05 Running 2/10/2004 17:23:21.902

4.	 To continuously monitor all jobs that start with "Accounting", enter the following.
Every time the status of one of those jobs changes, it will be output to the command
prompt window.

Mon all jobs whose name startsWith "Accounting"

5.	 This example starts monitoring all job and server activities.

mon all jobs, all servers

6.	 This example monitors all pairs that use the target server "LOGAN01", and only for
those jobs whose names begin with "Boston".

mon all pairs whose name endsWith ":LOGAN01" of every job

whose name startsWith "Boston"

7.	 Any of these examples will show what is currently being monitored.

monitor; monitor list; monitor show
20 srTool Reference Guide

Monitoring, Querying and Reporting Job Status
8.	 This example immediately stops all monitoring completely.

mon stop all

9.	 This example pauses the 15th monitor that was started, then immediately resumes it,
as well as 2, 3, 4 and 8 (if currently paused).

monitor pause 15; monitor resume 8, 15, 2 thru 4

Example 6. Query for Server Storage Information
Following is an example of querying all server volumes to report the server’s storage
state. The first step is to define a function to convert bytes into gigabytes:

function Gigabytes (inBytes)

returnValue = inBytes / 1024.0 / 1024.0 / 1024.0

end function

Now use the function to get the storage information about server “Chicago”:

select serverName, Name, FileSystem, Gigabytes (capacity),

Gigabytes (BytesFree) from all volumes of server "Chicago"

Chigago C: NTFS 33.8819 8.40384

Chicago E: NTFS 34.1806 25.07370

Another Example:

get name, domain, address, isAvailable, OSVersion,

OSWindowsSubType of all servers

Here is the output:

Accounting_15 Chicago 10.51.24.240 true Microsoft Windows NT

5.00.2195 Service Pack 2 Professional

Marketing_021 Seattle 10.51.24.120 true Microsoft Windows NT

5.00.2195 Service Pack 2 Professional

Marketing_024 Seattle 10.51.28.204 true Microsoft Windows NT

5.00.2195 Service Pack 4 Professional

Chapter 2, Getting Started Using srTool 21

Monitoring, Querying and Reporting Job Status
Example 7. Groom/Read/Summarize Logs and Alerts

1.	 The following example loops over all jobs that are not in the expected Running or
Completed state. Log entries corresponding to these jobs are returned. The output will
contain information that may help troubleshoot the cause of a Job not running or
being completed.

loop over all jobs whose JobState NE Running and JobState NE

Completed

echo -x "..... Job" + propName + "......."

get TimeStamp, MessageText of all logEntries of first job whose

ID EQ propID

end loop

2.	 Use the list or select command to see the LogEntries for a particular Job:

get TimeStamp, MessageText of all logEntries of job "Foo"

3.	 To determine the number of log entries for a given server:

count all logEntries of server "Foo"

4.	 Use the delete command to remove LogEntries. This example deletes all log entries
for the Job “Foo” that are more than three days old:

use job "Foo" of first RMS

delete every LogEntry whose TimeStamp LT (now () - '3 days' as

timespan)

22 srTool Reference Guide

Language Reference
3

This section discusses the basic language of srTool.

Starting srTool
srTool is launched from the Windows NT command shell (cmd.exe) using the srTool
command. Like most command-line utilities, the srTool command line can contain
parameters to control how it starts up and operates.

Command Line Syntax

[pathSpec] srTool[.exe] [parameters...]

As with any other program invoked from the Windows NT command shell, you can
optionally specify the fully qualified path name of the srTool executable itself. By
default, srTool is installed in the following directory:

<drive>:\Program Files\VERITAS\Replication Exec\

Note	 srTool, by default, starts with a high-level command shell that uses a default
compound object specification of first rms.

Required Parameters

There are no required parameters.

Optional Parameters

The optional parameters can be entered on the command line in any order except for the
-command (-cmd) option.
23

Starting srTool
The '/' character can also be used in place of the '-' character to designate the option
keyword.

Parameter Description

-v
-verbose

Causes the verbose srTool built-in shell variable to be initially set true.

-help Causes srTool to bring up the first page of its online help
documentation.

-h
-hl
-hlsob

Causes srTool to start up with a shell that uses the High-Level Client
Interface. (By default, srTool starts up with a shell that uses the
High-Level Client Interface.) Note that this option is mutually
exclusive with -nointerface.

-n
-no
-nointerface

Causes srTool to start up with a shell that does not use any Client
Interface, High-Level or Low-Level. Note that such a shell cannot
interact in any way with the Replication Exec system.

-cmd
-command

Instructs srTool to treat the rest of the Windows command line as
srTool commands that are to be immediately executed upon startup.

-stay Used in conjunction with the -command option (see above), this
option prevents srTool from exiting after executing the commands on
the Windows command line. Note that this option must be used in
combination with the -command option.

-nofirst If the new shell uses the High-Level Client Interface, this option
specifies that the shell should not set a default compound object
specification of "first rms" as it normally does. It is illegal to use this
option for a startup shell that uses no Client Interface.

-u {userName}
-user
-userid
-username

Specifies a user name to be used in authenticating to the RMS server.
If this option is used, the -password and -domain options must also
be specified.

Note: the user name must be in double quotes, for example
-user “Administrator”
24 srTool Reference Guide

Starting srTool
Parameter Description

-p {encryptedPassword}
-pw
-pass
-password

Specifies the password to be used in authenticating to the RMS server.
If this option is used, the -user and -domain options must also be
specified.

Caution: The use of clear text passwords is not advisable and poses a
security risk.

-d {domainName}
-dom
-domain

Specifies the name of the domain to be used in authenticating to the
RMS server. This option is required if the user must authenticate with
the RMS with credentials that are different from the logged on user.

When used, the -user and -password options must also be specified.

Note: the domain name must be in double quotes, such as
-domain (“MyDomain”). If the machine is not part of a domain, the
switch is still required, such as -domain ““.

See also:

“Object Properties” on page 66

Chapter 3, Language Reference 25

Basic Command Syntax
Basic Command Syntax
The srTool command language is quite simple. Most commands are of the following form:

command [compoundObjectSpec] [outputRedirection] [; ...]

...where...

command is a verb (for example, list or quit)

compoundObjectSpec is an optional compound object specification that refers to
one or more objects.

outputRedirection optionally instructs the srTool command shell to redirect the text
output of the command to a file on the local host computer system.

Any number of srTool commands may be entered on a single command line, as long as
they are separated by a semicolon.

srTool reads commands from the standard input stream, which by default is the keyboard.
srTool prompts for command input with the SRT301A message and will wait indefinitely
for a command to be entered. The quit command, when received by the original starting
command shell, will terminate srTool and return control to the host operating system.

Note	 Anything not a literal or constant can be specified in mixed case, that is is treated
case insensitively by srTool.
26 srTool Reference Guide

Basic Command Syntax
Command Summary

Object Discovery, Creation, Deletion and Changing Commands

Command Description

add Creates one or more objects

count Counts objects

delete Deletes one or more objects, and can delete functions and global
variables

list Displays property data obtained from one or more objects

select Displays the results of expressions using property data from one or
more objects

set Changes property values of one or more objects; also sets values of
shell variables

Server-Specific Commands

Command Description

enable Enables one or more servers

disable Disables one or more servers

Job-Specific Commands

Command Description

cancel Immediately cancels execution of one or more jobs

start Starts one or more jobs running

stop Gracefully stops one or more jobs

check Shows which files will be replicated
Chapter 3, Language Reference 27

Basic Command Syntax
SelectionRule (selRule)-Specific Commands

Command Description

demote Demotes one or more selection rules

promote Promotes one or more selection rules

Flow Control Commands

Command Description

break Exits the nearest ’Loop’

call Executes commands from a file in a new command shell

continue Jumps to the 'End' of the nearest 'Loop' block

else Ends an 'If' or 'ElseIf' block and starts an 'Else' block

elseIf Ends an 'If' or 'ElseIf' block and starts an 'ElseIf' block

end Terminates a 'Loop', 'If', 'ElseIf' or 'Else' block

exec Executes commands from a file in the current command shell

global Creates, declares or deletes global variables

if Starts a conditional block of commands

loop Begins a block of commands that may be repeatedly executed

spawn Executes commands in a new command shell in the background

wait Waits for a given amount of time or until an expression becomes true

Other Commands

Command Description

comment Doesn't do anything; used for documenting script files

configure Shows or modifies configuration parameters of client-side software
components.

dump Produces a file that can be used to restore or duplicate a replication
system.
28 srTool Reference Guide

Basic Command Syntax
Command Description

echo Echoes parameters to the output stream

function Defines new or redefines existing functions

help Shows documentation information about srTool

monitor Monitors replication system object creation, deletion and
modification.

quit Quits the srTool command shell

set Displays, defines, changes or removes shell variables

shell Executes a command on the host operating system

shift Shifts parameters in called scripts

show Shows available commands, objects, data types, properties, and so on

use Sets a default object specification for the shell

xml Displays objects or expressions in XML format
Chapter 3, Language Reference 29

Output Redirection
Output Redirection
The standard or diagnostic output from any srTool command can be redirected to a file.

Output Type Description

Standard The ordinary and expected information emitted by a command.

Diagnostic The unexpected information emitted by a command, such as error
and warning messages.

Redirection is specified by terminating the command with a redirection directive. If there
are multiple commands on the command line, the redirection directive must terminate the
command being redirected, but immediately precede any delimiting semicolon that
separates it from the adjacent command.

Syntax:

[1|2]>[>]stringLiteral

...where the stringLiteral must contain a valid path to a file.

If '1' is specified, or if neither '1' nor '2' is specified, the command's standard output is
redirected to the file. If '2' is specified, the command's diagnostic output is redirected to
the file. If the file does not yet exist, it is created.

If the second '>' is specified, the output information is appended to the file. The file
will be created if it does not yet exist.

Notes:

◆	 Redirection only applies to a single command. To apply it to several commands,
the commands should be placed in a single file to be called or exec’d using
redirection on the call or exec command.

◆	 Only one redirection directive may be specified for a single command. Thus, it is
not possible to concurrently redirect both standard and diagnostic output.

◆	 Since srTool commands do not themselves accept input from the keyboard or
standard input, there is no provision inside srTool for redirecting srTool
command input from a file. However, this can be accomplished externally
through the Windows NT command shell.

◆	 There is no support for UNIX-style "pipes" in srTool, nor is there support inside
srTool for directly "piping" the output of an srTool command to the input of an
(external) Windows NT command. This can be accomplished externally through
the Windows NT command shell.
30 srTool Reference Guide

Output Redirection
◆	 Be careful with Windows NT path delimiters inside the path string. Backslash ('\')
characters in string literals are used to "escape" certain special characters. See
“Constants (Literals)” on page 38 for information on specifying string constants.

◆ Spaces cannot separate any of the redirection syntax elements.

Example:

This example dumps the current job list to a file named "Current Jobs.txt" on JSmith's
desktop, overwriting any file by that name if it already exists.

list all jobs >"C:\\Documents and

Settings\\JSmith\\Desktop\\Current Jobs.txt"

This example appends all alerts to a file named "alerts.log" on the root of the C drive.

list all alerts >>"C:\\alerts.log"

Chapter 3, Language Reference 31

Data Types
Data Types
srTool supports a variety of data types used in object properties and shell variables.

Use the show types command to discover what data types are available.

Data Type Purpose Minimum Value Maximum Value

blob (byteArray) Represents an arbitrary bit
sequence.

<empty> Limited only by available
system memory.

dateTime Represents exact moments in
time with 1 millisecond
resolution.

<never> Approximately Mon Jan
18 19:14:04 2038

float Represents double-precision
floating-point numeric
values, with 15 digit
precision.

-1.7e+308 1.7e+308

int32 Represents signed 32-bit
integer values.

-2,147,483,648 +2,147,483,648

int64 Represents signed 64-bit
integer values.

-9,223,372,036,854,775,808 +9,223,372,036,854,775,808

string Represents text information,
including file or directory
paths.

"" (empty string) Limited only by available
system memory.

timeSpan Represents spans of time,
with 1 millisecond resolution.

0.000 seconds 2,147,483,647 days, 23
hours, 59 minutes, 59.999
seconds

uint32 Represents unsigned 32-bit
integer values.

0 4,294,967,296

uint64 Represents unsigned 64-bit
integer values.

0 18,446,744,073,709,551,616

uniqueID Represents globally unique
identifiers.

{00000000-0000-0000-0000-
000000000000}

{FFFFFFFFF-FFFF-FFFF-F
FFF-FFFFFFFFFFFF}
32 srTool Reference Guide

Data Types
Converting Between Different Data Types
srTool attempts to convert data to other types as needed (or as requested with the as
operator). The following chart describes how each data type can convert to any of the
other types.

to
string

to
uniqueID

to
dateTime

to
timeSpan

to
uint32

to
float

to
uint64

to
int64

to
int32

to
blob

from string Yes1 Yes2 Yes4 Yes Yes Yes Yes Yes Yes5

from
uniqueID

Yes No No No No No No No Yes

from
dateTime

Yes No Yes Yes3 No Yes Yes Yes3 Yes

from
timeSpan

Yes No No Yes3 No Yes3 Yes Yes3 Yes

from uint32 Yes No Yes Yes Yes Yes3 Yes3 Yes Yes

from float Yes No Yes3 Yes3 Yes3 Yes3 Yes3 Yes3 Yes

from uint64 Yes No Yes Yes Yes3 Yes3 Yes Yes3 Yes

from int64 Yes No Yes3 Yes Yes3 Yes Yes3 Yes3 Yes

from int32 Yes No Yes3 Yes Yes3 Yes Yes3 Yes Yes

from blob Yes Yes3 Yes3 Yes3 Yes3 Yes3 Yes3 Yes3 Yes3

1. The string must contain a valid uniqueID constant, otherwise it will not convert. See “Constants (Literals)”
on page 38 for syntax.

2. The string must contain a valid date specification. See “Converting a String into a DateTime” on page 35.

3. The conversion will take place without error, but some data loss—possibly significant—will occur.

4.	 The string must contain a valid timespan specification. See “Converting a String into a TimeSpan” on
page 36.

5. The string must contain a “bit string” or “hex string”. See “Converting a String into a Blob” on page 34.
Chapter 3, Language Reference 33

Data Types
Converting a String into a Blob

A blob is specified inside a string by a "bit string" or a "hex string".

Bit-String Method

The string starts with the character sequence '0b' (or '0B') and is followed by any number
of '0' or '1' characters. Any other characters found in the sequence fails the conversion. If
the sequence fails to end on a byte boundary, it will be zero-padded such that it does.

0b0101010101110100101110101010000101010100101011010001000000000000

Hex-String Method

The other method is by encoding a "hex-string" in which the string starts with the
character sequence '0x' (or '0X') and following it by at least 33 hexadecimal digits ('0'...'9'
plus 'a'...'f' or 'A'...'F'). Any other characters found in the sequence fail the conversion. If
the sequence fails to end on a byte boundary, it will be zero-padded such that it does.

0x0123456789ABCDEFfedcba9876543210AaBbCcDdEeFfEeDdCcBbAa0011223344

Converting a String into a UniqueID

A globally unique identifier is specified by enclosing the following exact character
sequence in curly braces ('{' and '}'):

◆ 8 hexadecimal digits

◆ 1 hyphen

◆ 4 hexadecimal digits

◆ 1 hyphen

◆ 4 hexadecimal digits

◆ 1 hyphen

◆ 4 hexadecimal digits

◆ 1 hyphen

◆ 12 hexadecimal digits

Example:

{A32Fba1E-D2D7-4583-850A-1FA58CbB9eB0}

34 srTool Reference Guide

Data Types
Converting a String into a DateTime

A string value can be converted into a dateTime value provided the string meets the
following syntax rules:

datePart | timePart | {datePart timePart}

where...

datePart = monNumber '/' dyNumber ['/' yrNumber]

timePart = hrNumber [':' minNumber [':' secNumber]] [meridianSpec]

and...

Variable Description

monNumber An unsigned decimal integer literal whose value is between 1 and 12

dyNumber An unsigned decimal integer literal whose value is between 1 and 31

yrNumber An unsigned decimal integer literal whose value is between 0 and 2038

hrNumber An unsigned decimal integer literal whose value is between 0 and 23

minNumber
secNumber

An unsigned decimal integer literal whose value is between 0 and 59

meridianSpec An (optional) ‘AM’ or ‘PM’ in upper or lower case

Examples:

"4/2/2002 4:03 PM"

"01/01/01 22:02:03:222"

This example specifies April 15th of this year:

"4/15"

This example specifies 5 P.M. today:

"5 PM"

Chapter 3, Language Reference 35

Data Types
Converting a String into a TimeSpan

A string value can be converted into a timeSpan value, provided the string meets the
following syntax rules:

{shorthandSpec} | {longhandSpec}

where...

shorthandSpec

number ':' number [':' number [...]]

There can be a maximum of 4 numbers with 3 intervening colons. From the least
significant (rightmost) number to the most significant (leftmost) number, the values
represent, respectively, seconds, minutes, hours and days. Fractional decimal values
can be used for any of the numeric values.

Examples:

"0:3" as timeSpan

"2.5 : 13.5 : 98.7 : 1023.33" as timespan

"4:5:3:22" as timespan

longhandSpec

{number timeUnit} [...]

One or more numeric values get associated with a specific time unit. The resulting
timeSpan is the sum of all specified time spans. Any numeric values can have
fractional values. No time unit can be specified more than once.

Examples:

"3 seconds" as timeSpan

"2.5 days 13.5 hours 98.7 minutes 1023.33 seconds" as timespan

"4d5h3m22s" as timespan

number

digit [...] ['.' digit [...]]

A number, as expressed in either of the above specs, is an unsigned decimal value that
is either integer or floating point. Floating point values cannot have exponents. There
can be no intervening whitespace characters between digits or the decimal point.

Examples:

00000000000321321

987654321.123456789

timeUnit

A timeUnit, as expressed in any of the above specs, is any of these keyword values:
36 srTool Reference Guide

Data Types
'millenia' | 'milleniums' | 'millenium' | 'mills' | 'mill' |

'centuries' | 'century' | 'cents' | 'cent' |

'decades' | 'decade' | 'decs' | 'dec' |

'years' | 'year' | 'yrs' | 'yr' | 'y'

'months' | 'month' | 'mons' | 'mon' | 'mos' | 'mo' |

'weeks' | 'week' | 'wks' | 'wk' | 'w' |

'days' | 'day' | 'dys' | 'dy' | 'd' |

'hours' | 'hour' | 'hrs' | 'hr' | 'h' |

'minutes' | 'minute' | 'mins' | 'min' | 'mns' | 'mn' | 'm' |

'seconds' | 'second' | 'secs' | 'sec' | 's' |

'milliseconds' | 'millisecond' | 'msecs' | 'msec' | 'ms'

See also:

“Constants (Literals)” on page 38
Chapter 3, Language Reference 37

Constants (Literals)
Constants (Literals)
A constant is a literal specification of a data value in an srTool command line.

There are only six data types that can be specified as constants in the srTool command
line, as follows.

string

A string constant is specified by enclosing any text in single or double quote marks.

{" | ' } [character] [...] {" | ' }

"This is Bob's string"

'This is also a "big" string'

Note	 If a single quote is used to start the string, a single quote must terminate the string;
and, if a double quote is used to start the string, a double quote must terminate it.

Note	 srTool does not support the wrapping of string constants onto subsequent
command lines.

Character escaping is supported through the use of the backslash ('\') character, although
the use of quote marks different from those delimiting the string itself can be used in lieu
of escapes for quote marks. The characters following the backslash are as follows.

Escape Sequence Represents

\a Bell (alert)

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\v Vertical tab

\' Single quotation mark

\" Double quotation mark

\\ Backslash
38 srTool Reference Guide

Constants (Literals)
If the character that follows the backslash is not represented in the table above, both the
backslash and the subsequent character are placed in the resulting string.

blob (byteArray)

A blob is specified as a "hex string" or a "bit string":

Bit String:

'0b' or '0B'

followed by any number of '0' or '1' characters

0b1000101011010101101010111101010100001010010101101010110101

0111101010101010000101010101

◆	 If the specified bits do not end on a byte boundary, the resulting byte array is
zero-padded at the end such that it will end on a byte boundary.

Hex String:

'0x' or '0X'

followed by at least 17 hexadecimal digits ('0'..'9' plus 'a'..'f' or 'A'..'F')

0x0123456789AbCdEfFeDcBa98765432100123456789AbCdEfFeDcBa9876

543210

Notes:

◆	 If the specified hex digits do not end on a byte boundary, a "zero nibble" is
automatically appended such that the data will end on a byte boundary.

◆	 If 16 hex digits or less are specified, the value of the literal is a uint64 value. If 8
hex digits or less are specified, the value of the literal is a uint32 value.

uniqueID

A globally unique identifier is specified by enclosing the following exact character
sequence in curly braces:

◆ 8 hexadecimal digits

◆ 1 hyphen

◆ 4 hexadecimal digits

◆ 1 hyphen

◆ 4 hexadecimal digits

◆ 1 hyphen
Chapter 3, Language Reference 39

Constants (Literals)
◆ 4 hexadecimal digits

◆ 1 hyphen

◆ 12 hexadecimal digits

Example:

{A32FBA1E-D2D7-4583-850A-1FA58CBB9EB0}

uint32

Any unsigned decimal digit sequence or the characters "0x" or "0X" followed by a
sequence of 8 or fewer hexadecimal digits is treated as a uint32, an unsigned 32-bit integer
value.

3212

0x21Abc9

uint64

Any unsigned decimal digit sequence larger than a uint32 or the characters "0x" or "0X"
followed by a sequence of 9 to 16 hexadecimal digits is treated as a uint64, which is an
unsigned 64-bit integer value.

32127458398

0x21Abc9A015B

float

A floating point number is specified as an unsigned decimal digit sequence followed by a
decimal point, then optionally followed by another digit sequence representing the
fractional portion and an optional exponent.

1.2

12345.678e+5

‘as’ operator

To generate a data type other than the above six types in places where expressions are
allowed, use the as operator to convert it to the desired type. For example:

53274583 as timespan

0x20 as integer

40 srTool Reference Guide

Variables
Variables
A variable is a named data value that can be used in expressions.

Syntax

letter [letter | digit] [...]

Like all identifier names in srTool, a variable name must start with an alphabetic (letter)
character, and optionally be followed by any number of letters or digits. There is no limit
to the number of characters that may comprise an identifier name.

Note	 You may choose any name that you wish for your variables, with the exception of
property names, which are reserved. It is strongly recommended that you not use
the names of existing objects, operators, data types, or other keywords.

Some variables are predefined by srTool, and of those, some are read-only. That is, you
cannot change their values in a set command.

Examples:

myVariableName

AnExtremelyLongVariableName1234567

Execution Contexts

Scoping Rules

A variable exists in the execution context in which it was defined. Execution contexts are
maintained for begin, if/else, loop, and function commands, plus the command
shell itself. For example, if you define a variable inside of a loop construct, the variable
will cease to exist once the loop has exited. Likewise, a variable defined inside of a
user-defined function will go out of scope once the function has finished executing. Or, if a
file of srTool commands was executed by a call command, any variables defined therein
will be out of scope when the called file returns.

Global Variables

The exceptions to the above scoping rules are global variables, which are created using the
global command. To prevent confusion, do not choose the same names for global and
local variables. Global variables are accessible from any execution context or command
shell.
Chapter 3, Language Reference 41

Variables
Variable Discovery

To discover what variables are currently defined, use the set command with no

parameters or use the show Contexts command. The show global command can also

be used to display just the global variables.

Creating Variables

◆ To create a local variable, define it using the set command.

◆ To create a global variable, use the global command.

Note You cannot use the name of any object properties when naming a variable.

Examples:

set x = 32

global y = " "

Changing Variables

To change the value of a variable, use the set command. The type of data that a variable
can store is not fixed and can be changed any time, provided its access is not read-only.

Example:

set x = 2.0

Deleting Variables

To delete a variable, use the set command (with nothing past the “=” sign). Any future
references to that variable will produce an error. To specifically delete a global variable,
use either the delete global command or the global command with no expression
following the "=" sign.

Example:

set x =

delete global y

global z =

42 srTool Reference Guide

Variables
Built-in Variables
The following variables are defined automatically by srTool's command shell, and are
local in scope and valid for that shell until it has exited.

Variable Description

commandResult This variable contains a string whose value is set to the result code of
the last command that was executed by the command shell. If the last
command was successful, it will be set to "RXRESULT_Success".

Default value: "RXRESULT_Success"

Data Type: string

Access: ReadOnly

continueOnError This variable, if it evaluates to logical true, causes the shell to
continue executing queued commands, even if a command fails. If its
value is false, the shell will stop executing queued commands when
one fails.

Default value: true

Data Type: uint32

Access: ReadWrite

debugLevel This variable acts as a "volume control" that controls the volume of
diagnostic output of the command shell to the “HLSOBLog...” log
files, which may be useful on occasion when diagnosing problems
with srTool itself.

The "off" setting is zero; 1 is "low", 2 is "medium" and 3 is "high" (or
"maximum").

See also the config command.

Default value: 0

Data Type: uint32

Access: ReadWrite

echoCommands This variable, if true, echoes the tokenized command, along with a
time stamp, to the standard diagnostic stream prior to its execution. If
false, no such command echo takes place. Setting this true greatly
assists in the debugging of srTool command scripts.

Default value: false

Data Type: uint32 with value of 0 or 1.

Access: ReadWrite
Chapter 3, Language Reference 43

Variables
Variable Description

fieldDelimiter This variable determines the text that will appear between adjacent
fields in listings caused by the list or select commands.

The default value is a comma followed by a space. Often, it's helpful
to use a Tab character to separate property values. To do this, simply
execute this command: fieldDelimiter = ToChar (9)

Default value: ","

Data Type: string

Access: ReadWrite

inexactShorthand This variable specifies how name matching is done when using
shorthand object specifications that are done by name. If true, name
matching is done inexactly using the "contains" operator (although
still case-sensitively). If false, name matching is done exactly.

Default value: false

Data Type: boolean

Access: ReadWrite

nestingLevel This contains the nesting level of the command shell. When srTool is
started, the default shell's nesting level is 1. All subsequent shells
invoked by the call command will have nesting levels one higher
than the parent shell that invoked it. Shells that are created by the
spawn command will always have a nesting level of one.

Default value: (see description)

Data Type: count

Access: ReadOnly

promptString This variable determines the prompt that the command shell emits
prior to awaiting command input from the standard input stream.

The default prompt is the SRT301A message followed by a newline.
To restore the default prompt, set it to an empty string or delete it.

Default value: (see description)

Data Type: string

Access: ReadWrite
44 srTool Reference Guide

Variables
Variable Description

recordDelimiter This variable dictates the text that will appear between adjacent rows
in listings caused by the list or select commands.

The default value is a newline sequence. To restore this default,
simply execute this command:
recordDelimiter = ToChar (13) + ToChar (10)

Default value: newline

Data Type: string

Access: ReadWrite

remoteFiltering This variable, if true, enables the use of server-side filtering (if the
server supports it). If false, all filtering is done on the client side,
which as a general rule is much less efficient.

Default value: true

Data Type: uint32

Access: ReadWrite

remoteSorting This variable, if true, enables the use of server-side sorting (if the
server supports it). If false, all sorting is done on the client side,
which as a general rule is much less efficient.

Default value: true

Data Type: uint32

Access: ReadWrite

shellID This variable contains a human-readable string that contains an
identifying name for the command shell, which is guaranteed to be
unique within a single execution instance of srTool.

It is possible to decipher the lineage of a command shell from this
name. For example, the name "4.7.9" had to be a shell that was
invoked using the call command from another shell that was
invoked using call from a shell that was spawned from the root
shell.

Default value: “1”

Data Type: string

Access: ReadWrite
Chapter 3, Language Reference 45

Variables
Variable Description

sobType This variable contains a human-readable string that identifies the
Client Interface that's in use by the command shell. It can be one of
two values: "HLSOB" (High Level Client Interface) or " " (empty,
which means, no Client Interface).

Default value: (see description)

Data Type: string

Access: ReadOnly

verbose This variable, if true, causes srTool to report greater details about
what transpires. If false, srTool is much more brief in its reporting.

Default value: false

Data Type: uint32

Access: ReadWrite

whenShellStarted This variable contains the date and time when the command shell
was started in local time to the machine that is hosting srTool.

Default value: (see description)

Data Type: dateTime

Access: ReadOnly

Global Variables

srTool automatically defines many built-in global variables, all of which are read-only and
valid for the high-level command shell.

Variable Name Value Data Type

NullID {00000000-0000-0000-0000
-000000000000}

uniqueID

False 0 uint32

True 1 uint32

Pi 3.14159 float

JobState Property Values:

These predefined global constants can be used when comparing the JobState property of job
objects.

◆ Canceled 2 uint32

◆ CanceledWithErrors 3 uint32
46 srTool Reference Guide

Variables
Variable Name Value Data Type

◆ Canceling 16 uint32

◆ Completed 6 uint32

◆ CompletedWithErrors 7 uint32

◆ Completing 18 uint32

◆ Expired 4 uint32

◆ ExpiredWithErrors 5 uint32

◆ Expiring 17 uint32

◆ NeverRun 1 uint32

◆ Paused 13 uint32

◆ Pausing 12 uint32

◆ Rallying 14 uint32

◆ Resuming 14 uint32

◆ Running 9 uint32

◆ RunningWithErrors 10 uint32

◆ Starting 8 uint32

JobType Property Values:

These predefined global constants can be used when comparing the JobType property of job
objects.

◆ ManyToMany 3 uint32

◆ ManyToOne 1 uint32

◆ OneToMany 2 uint32

◆ OneToOne 0 uint32

TargetReplicaType Property Values:

These predefined global constants can be used when comparing the TargetReplicaType property of
job objects.

◆ Merge 2 uint32
Chapter 3, Language Reference 47

Variables
Variable Name Value Data Type

◆ Pure 0 uint32

◆ Qualified 1 uint32

◆ UpdateOnly 3 uint32

ClusterType Property Values:

These predefined global constants can be used when comparing the ClusterType property of job
objects.

◆ MSCS 2 uint32

◆ VCS 1 uint32

MappingMethod Property Values:

These predefined global constants can be used when comparing the MappingMethod property of
job objects.

◆ PrependNone 3 uint32

◆ PrependSourceImmediateParent 2 uint32

◆ PrependSourceRootDirPath 1 uint32

◆ PrependSourceServerPath 0 uint32

See also:

“Expressions” on page 50

“Terms” on page 51

“Functions” on page 57

“call command” on page 78

“exec command” on page 97

“global command” on page 103

“set command” on page 118

“show command” on page 122

“spawn command” on page 124

48 srTool Reference Guide

Variables
Parameter Variables

These variables are defined automatically by srTool in the process of invoking an srTool
command script using the call, exec or spawn command. They are local in scope and
have read-write access.

Variable Name Description Data Type

paramCount This contains the number of parameters passed to the script,
including the name of the script file itself.

integer

param0 This variable contains the first parameter passed to the script.
It contains the name of the script file being executed.

string

param1,
param2, ...

These variables contain any other parameter data that was
passed to the script.

(any)
Chapter 3, Language Reference 49

Expressions
Expressions
An expression is a single term or two or more terms that are separated by certain
lower-precedence binary operators.

Syntax

term [binaryOperator term] [...]

The valid binary operators that can separate terms are as follows, shown in decreasing
precedence order.

Binary Operators Description

* or multiplyBy Multiply

/ or dividedBy Divide left-neighboring term by right-neighboring one

mod The remainder after dividing left-neighboring term by
right-neighboring one

startsWith ◆ True if the left string starts with the right string

contains ◆ True if the left string contains the right string

endsWith ◆ True if the left string ends with the right string

+ or plus Adds or concatenates the left and right term

– or minus Subtract the right term from the left term

Comparisons:

eq, is, =, equal or
equalTo

◆ Equality: results in True if left and right terms are equal

ne, notEqual, or
notEqualTo

◆ Inequality: results in True if left and right terms are unequal

lt, <, or lessThan ◆ Less than: results in True if left term is less than right term

ge or
greaterThanOrEqual

◆ Greater than or equal: results in True if left term is greater than
or equal to right term

gt or greaterThan ◆ Greater than: results in True if left term is greater than right
term

le or lessThan ◆ Less than: results in True if right term is greater than left term
50 srTool Reference Guide

Expressions
Binary Operators Description

& or and Boolean ‘and’ operation. Results in True if both left and right
terms are True

| or or Boolean 'or' operation. Results in True if either left or right terms
are True.

Examples:

"Foo"

5 + 4

10 plus 5.0 minus "3"

See also:

“Terms” on page 51

Terms
A term is a factor or two or more factors that are separated by certain
moderate-precedence binary operators. A term can optionally be preceded by a unary
operator.

Syntax:

[unaryoperator] factor [[^] factor] [...]

The valid operators allowed to separate or precede factors are as follows.

Operators Operator Type Description

^ or raisedTo Binary (separate) Raise left-neighboring factor to the power
determined by the right-neighboring factor

! or not Unary (precede) Performs a boolean negation of the factor

-, minus, negate Unary (precede) Performs an arithmetic negation of the factor
Chapter 3, Language Reference 51

Expressions
Examples:

5

-5

5^3

- 5^3

See also:

“Factors” on page 52

Factors
A factor can be a constant, a local or global variable, the value of an object’s property, the
result of a function call, or another expression (provided it is enclosed in parentheses).

Note Expressions cannot be nested more than 64 levels deep.

Syntax:

constant

| variableName

| propertySpec

| functionName ([expression [,...]])

| (expression)

[as dataType]

Examples:

5

name of first RMS

pi

now ()

(5.4 GT 10.0)

23.445e-6 as string

52 srTool Reference Guide

Expressions
See also:

“function command” on page 100

“Object Properties” on page 66

“Output Redirection” on page 30

“Property Specifications” on page 55

“set command” on page 118

“SortedBy Clause” on page 71

“srTool Object Hierarchy” on page 64

“Variables” on page 41

Chapter 3, Language Reference 53

Expressions
Operators
There are two classes of operators in srTool: unary and binary.

◆ Unary operators precede an operand (a term) in an expression.

◆	 Binary operators conjoin two operands, either in a term, a simple expression or
expression. Only the as operator can be used in factors in expressions.

Of the binary operators, six are further sub-classed as comparison operators.

Using the show operators command yields a complete list of the available operators
and their classification:

Operator Classification

not unary

negate unary

and binary

or binary

xor binary

plus binary

minus binary

multiplyBy binary

dividedBy binary

mod binary

raisedTo binary

startsWith binary

contains binary

endsWith binary

eq binary, comparison

ne binary, comparison

lt binary, comparison

le binary, comparison
54 srTool Reference Guide

Expressions
Operator Classification

gt binary, comparison

ge binary, comparison

as binary

See also:

“Expressions” on page 50
“Terms” on page 51

Property Specifications
A property specification uniquely identifies a property of a specific kind of object, or a
special value that is computed from a specific property of multiple objects.

Syntax:

[specialValue] propertyName [of compoundObjectSpec]

The specialValue , if present, must be one of the following keyword values:

Value Description

minimum Results in the minimum value of the specified property

average Results in the average value of the specified property

median Results in the median value of the specified property

maximum Results in the maximum value of the specified property

total Results in the sum of the specified property

◆ If the specialValue is present, the “of compoundObjectSpec” must also be present.

◆	 If the compoundObjectSpec (object specification) is present, and the specialValue is
not present, the object specification must resolve to a single object, or else the
evaluation of the expression in which the property specification appears will fail.

◆	 If the compoundObjectSpec is not present, the property is assumed to come from the
object under consideration while executing a query.
Chapter 3, Language Reference 55

Expressions
Notes:

Because these property specifications can appear inside comparison expressions of an
object specification's "whose clause" (inside of a larger compound object specification),
this can lead to an ambiguity in the object specification.

For example, suppose you want the name of every available server. The novice srTool user
could innocently code the command without the use of a default object specification:

get name of every server whose isAvailable of first RMS

This command will not work. srTool gets confused when parsing the "whose" clause,
thinking that "isAvailable of first RMS" is a property specification, which is not the intent
in this example. When srTool tries to get the data, it cannot because it is looking for server
objects at the root level, which do not exist (servers come from RMS objects). To avoid the
ambiguity, use parenthesis:

get name of every server whose (isAvailable) of first RMS

...or add a comparison:

get name of every server whose isAvailable is true of first RMS

The use command will also avoid this ambiguity:

use first RMS; get name of every server whose isAvailable

Example:

To get the average number of pairs for Jobs that have more than one pair:

echo -x average pairCount of all jobs whose pairCount GT 1

To get the highest alert count of any job:

echo -x maximum alertCount of all jobs

See also:

“srTool Object Reference” on page 135
“Object Properties” on page 66
“use command” on page 129
56 srTool Reference Guide

Functions
Functions
Functions are named entities that can accept any amount of parameter data, process that

data, and return a single data value. srTool has a number of built-in functions, and

provides users the ability to create additional functions.

Discovering Functions

Use the show functions command to see the available functions.

Built-in Functions

The following table shows the functions that are built into srTool.

Function Name Description

Encrypt (inString) Performs a one-way encryption of the string, typically used to encrypt a clear text
password while creating credentials.
Example:
echo -x encrypt("My Name")

Will return something like:
0x313E4A42301FE78B2B76E74F0993E53749C8F6450107AB2F6761F75C016
29792

Errorsof (inCommands) Returns the error message(s) that results from executing the text contents of
inCommands in a separate srTool command shell. If the command(s) succeeded,
the resulting string will be "RXRESULT_Success". For a description and catalog of
these messages, see Appendix A, Errors & Messages.

Example:

echo -x ErrorsOf ("Foo")
RXRESULT_Syntax

FileExists (inFilePath) Returns "true" if the file identified by inFilePath exists, or "false" if it does not.

Example:

echo -x FileExists("c:\\winnt\\system32\\calc.exe")

This will return 1 if true, 0 if false.

Find (inNeedle,
inHaystack)

Returns the character position of inNeedle in inHaystack. If not found, returns -1.

Example:

echo -x find ("g", "abcdefghijklmnop")
6
Chapter 3, Language Reference 57

Functions
Function Name Description

If (inCondition,
trueResult, falseResult)

Returns trueResult if inCondition evaluates to true (non-zero), or falseResult if false.

Example:

echo -x If(1 = 1, 4, 5)

This will return 4 because 1 = 1 is true.

echo -x If(3 = 1, 4, 5)

This will return 5 because 3 = 1 is false

Getproperty
(inObjectID, inProperty)

Returns the property data value for the given object, given its globally unique
identifier, and the name or ordinal value of the desired property.

Example:

echo -x GetProperty (id of first job, "Name")

Indent (inString) Replaces all newline character sequences in the given string with a new character
sequence consisting of a newline and a tab character.

Examples:

set s = "This\nis\na\ntest"
echo -x s

This
is
a
test

echo -x indent(s)

This
is
a
test

Left (inText,
inNumChars)

Returns one or more of the left-most characters of inText. The number of characters
to be returned is determined by inNumChars.

Example:

echo -x Left ("This is a test", 7)

Outputs: This is

MakeString
(inTextToRepeat,
inRepetitions)

Returns a string that contains the text of inTextToRepeat repeated the desired
number of times.

Example:

echo -x MakeString("Hello World ", 4)

Returns the following:

Hello World Hello World Hello World Hello World
58 srTool Reference Guide

Functions
----------- --------

Function Name Description

Max (inValue1, inValue2,
...)

Returns the value of the largest of all given arguments.

Example:

echo -x Max (5, 10, 30)

30

Min (inValue1, inValue2,
...)

Returns the value of the smallest of all given arguments.

Example:

echo -x Min (5, 10, 30)

5

NewID () Returns a new globally unique identifier.

Example:

echo -x NewID ()

{1B1330E6-06C0-4665-9037-AF5A131B1D73}

Now () Returns a dateTime value representing the local time of the host machine on which
srTool is running.

Example:

echo -x now ()

2/5/2004 21:31:46.230

OutputOf
(inCommands)

Returns the standard output that results from executing the commands stored in
inCommands in a separate srTool command shell.

Example:

a = OutputOf ("verbose = true; get name, jobstate of first 3
jobs of first rms"); echo -x a

3 objects:

Name JobState

Untitled 90 Canceled

Untitled 35 Canceled

Untitled 56 Canceled

Random () Returns a pseudo-random int32 value between -32767 and +32767.

Example:

echo -x random ()

2341
Chapter 3, Language Reference 59

Functions
Function Name Description

ReadFile (inFilePath) Returns a string that contains the contents of the specified file.

Example:

set a = ReadFile("c:\\data.txt")

echo -x a

This is a test Provides the contents of this file.

Note: Character escaping syntax is observed and may give unexpected results if
the user is not aware of this.

Replace (inText,
inSearchText,
inReplacementText [,
inCount])

Replaces every occurrence of inSearchText in inText with inReplacementText, unless
inCount is specified, in which case the number of replacements made is capped by
that value.

Example:

echo -x replace("abcdeabcdeabcde", "a", "Z", 2)

ZbcdeZbcdeabcde

Right (inText,
inNumChars)

Returns one or more of the right-most characters of inText. The number of
characters to be returned is determined by inNumChars.

Example:

echo -x Right("Hello World!", 8)

o World!

SizeOf (inValue) Returns the size of inValue, in bytes, or in the case of text data, in characters.

Example:
loop for a in "Hi", 12, 0.1, NewID (), Now ()

echo -x SizeOf (a)

end
2
4
8
16
8

SubString (inText,
inStartingPos,
inDesiredLength)

Returns a sub-string from inText, starting in the character position determined by
the value of inStartingPos, whose length, in characters, is determined by the value
of inDesiredLength.

Example:

echo -x SubString("one two three four five", 5, 4)

wo t
60 srTool Reference Guide

Functions
Function Name Description

ToAscii (inCharacter) Returns a numeric value that represents the character code of the first character of
inCharacter.

Example:

echo -x ToAscii("a")

111

ToBitString (inValue) Returns a string that contains the bit-string encoding of inValue.

Example:

echo -x ToBitString ("TEST")

0b010101000000000001000101000000000101001100000000

ToChar (inNumber) Returns a string that contains the character whose code is inNumber.

Example:

echo -x ToChar(112)

p

ToHexString (inValue) Returns a string that contains the hex-string encoding of inValue.

Example:

echo -x ToHexString(15)

0x0000000F

ToLower (inText) Returns inText folded to lower case.

Example:

echo -x ToLower("This is a Test")

this is a test

ToUpper (inText) Returns inText folded to upper case.

Example:

echo -x ToUpper("This is a Test")

THIS IS A TEST
Chapter 3, Language Reference 61

Functions
Function Name Description

TypeOf (inValue) Returns the name of the argument's data type as a mixed-case string.

Example:

loop for a in 0x123456789ABCDEF0123,"Hi", 12, 0.2, NullID
echo -x TypeOf(a)
end

byteArray
string
uint32
float
uniqueID

WriteFile (inFilePath,
dataToWrite)

The WriteFile function writes the given data into the specified file. When writing
anything but "byteArray" (or "blob") data, WriteFile always writes its data as
Unicode strings. For "byteArray" data, WriteFile always writes raw binary data.

For example, to perform a binary copy of the file "foo.mp3" to "bar.mp3" in the
current directory:

echo -x WriteFile ("bar.mp3", ReadFile ("foo.mp3",
ByteArray))

To copy the text file "foo.txt" to "bar.txt":

echo -x WriteFile ("bar.txt", ReadFile ("foo.txt"))

Another example:

echo -x WriteFile("c:\\test.txt", "This is a test")

!"type c:\\test.txt"

Returns the following:

T h i s i s a t e s t

Creating Functions

To create your own functions, use the function command. See “function command”
on page 100.

Deleting Functions

To delete user-created functions, use the delete command. See “delete command” on
page 87.

Note You cannot delete any of the built-in functions.
62 srTool Reference Guide

Macros and Embedded Commands
Macros and Embedded Commands

Macros
srTool command shell variables can be used to make "macro" replacements in the srTool
command line.

A macro replacement is only performed in the context of a single command, and as such,
must itself not contain any command delimiters (semicolon characters). Whatever
ultimately gets executed must remain a single command.

Example:

This example displays only the read-only properties of all replication jobs.

propList = Replace (OutputOf ('get name of all properties whose
access EQ ReadOnly of ObjectKind "FileReplicationJob"'), "\n",
",") - ","

get %propList of all jobs

Embedded Commands
By enclosing srTool commands in back-quote characters, the output of the command(s)
can be used as arguments passed to other srTool commands.

The characters that replace the embedded command in the currently executing command
must not contain any command delimiters (semicolon characters). Whatever gets
executed must remain a single command.

The embedded command runs in its own separate command shell of the same type as its
parent (that is, a high-level shell will use another high-level shell). The embedded
command’s shell inherits most of the parent shell’s variables, as well as its default object
specification.

Example:

This example lists all properties of all replication jobs except for the read-only ones.

list -omit ‘get name of all properties whose access EQ ReadOnly
of objectkind "FileReplicationJob"‘ of all Jobs
Chapter 3, Language Reference 63

Objects
Objects
srTool’s objects represent entities in the replication system that may be interrogated and
directed to perform certain operations. There are many objects in the Replication Exec
system, such as servers, jobs, alerts, and so on.

The show objects command shows the complete set of replication system objects in a
hierarchical fashion.

srTool Object Hierarchy
Following is the current object hierarchy of srTool.

RMS
Server

LogEntry
License
Volume

Folder
Folder
File
SubItem

File
SubItem

FileReplicationJob
SourceServer

LogEntry
License
Volume

Folder
Folder
File
SubItem

File
SubItem

TargetServer
LogEntry
License
Volume

Folder
Folder
64 srTool Reference Guide

Objects
File
SubItem

File
SubItem

ReplicationPair (pair)
LogEntry
Script

PathRule
SelectionRule (selRule)
DestinationRule (destRule)

LogEntry
Alert

Credential
ObjectKind

Property

Note Names in parenthesis (above) indicate aliases of the objects.

Objects contain information in the form of Properties. For example, the name of a
replication job is a property of the job object. Some objects can also contain other objects.
The list above shows the containment hierarchy.

The list all objectKinds command displays the complete set of replication system
objects in a table.

Root-Level Objects

Root-level objects are situated at the top of the object ownership hierarchy, and they vary,
depending on which Client Interface is used by the srTool command shell. The default
srTool command shell uses the "High-Level Client Interface".

The High-Level Interface supplies three root-level objects: RMS, Credential and ObjectKind.

Discovering Objects

To discover what object instances exist of a particular kind, you can List them and their
properties, Count them or Select expressions using their properties:

list all servers

count every server

get name, address of all servers

select "\\\\" + name + "\\C$" from every server

Chapter 3, Language Reference 65

Objects
Creating New Objects

To add a new object, use the add (or create) command:

add job with type = OneToOne

Deleting Objects

To delete an existing object, use the delete command:

delete every pair whose name startsWith "A" of job "Milan"

See also:

“add command” on page 73
“count command” on page 86
“delete command” on page 87
“list command” on page 106
“select command” on page 117
“show command” on page 122
“Objects” on page 64

Object Properties
There are many object properties in the Replication Exec system. Use the list every
property of every objectKind command to display them all.

Access Types

Each property has an "access" attribute that determines whether or not it can be changed
in srTool.

Access Description

Constant The property value never changes during the life of the object. An example
of this is the ID property of an object.

ReadOnly The property value cannot be directly changed using the set command,
but is useful for reporting on the status of some aspect of the replication
system. For example, the JobState property of a job object can tell you if the
job is running or not.

Mutable The property value can be changed freely. For example, the Description
property of a job can be set to any desired text.
66 srTool Reference Guide

Objects
Querying Property Values

To inspect all of the properties of an object, use the list command without specifying
any specific properties. For example:

list any server

To show only those properties of specific interest, use the list command, and specify
those properties in the order they should be viewed. For example:

get name, jobstate of every job

Modifying Property Values

To change a mutable property's value, use the set command. For example:

set nameSpec of first selRule of first Rule of job "Roma" to

"*.DOC"

Discovering Properties

To find the names of all the properties for a specific object type, use the list command.
For example, to show the name of all properties of ReplicationPair objects:

get name of all properties of objectKind "ReplicationPair"

See also:

“srTool Object Reference” on page 135.

Object Specifications
Object specifications allow you to specify the objects in the replication system you wish to
apply to the action inferred by the command verb.

Object specifications only refer to one or more objects of a single type. This means, for
example, that you can't refer to servers and jobs within the same object specification.

To refer to objects that belong to other objects, compound object specifications must be used,
which are built from the simple object specifications.

Syntax:

GroupingSpec ObjectKind [WhoseClause] [SortedByClause]

...or...
Chapter 3, Language Reference 67

Objects
ObjectKind IndexingSpec [WhoseClause] [SortedByClause]

...or...

ObjectKind {stringLiteral | uniqueIDLiteral} [, ...]

◆	 ObjectKind refers to the kind of object of interest, for example jobs, servers, and so on.
It can be specified in singular or plural form.

◆	 The last form is a kind of shorthand for conveniently referring to a few objects by
name or ID. For example:

jobs "Roma", {4EE727B0-AB6F-11d4-A007-00C04F3F7867},

"Brussels"

Note	 For shorthand, names can be matched exactly or inexactly, depending on the value
of the built-in shell variable inexactShorthand.

◆ It is illegal to use a GroupingSpec and an IndexingSpec in the same object specification.

Note If the SortedBy clause is not specified, the object ordering is indiscriminant.

◆	 When resolving object specifications into a resulting ordered list of objects,
WhoseClause filtering is performed first (if any), followed by sorting (if any), followed
by grouping or indexing (if any).

See also:

“Compound Object Specifications” on page 72

“Grouping Specifications” on page 68

“Indexing Specifications” on page 70

“Objects” on page 64

“SortedBy Clause” on page 71

“srTool Object Hierarchy” on page 64

“Whose Clause” on page 71

Grouping Specifications
A grouping specification allows you to specify one or more objects relative to other objects
in a group.

Syntax:

{all | every}

...or...
68 srTool Reference Guide

Objects
{first | last | middle | any} [expression]

In the latter form, the expression specifies the number of objects being requested. If the
expression is omitted, it is assumed that only a single object is requested.

Keyword Meaning

all,
every

Results in all existing objects.

first Results in any number of objects chosen from the top of the object list.

last Results in any number of objects chosen from the bottom of the object list.

middle Results in any number of objects chosen from around the middle of the object
list.

any Results in any number of randomly-selected objects from the object list.

Examples:

all jobs

first 5 selectionRules

any pair

See also:

“Expressions” on page 50
Chapter 3, Language Reference 69

Objects
Indexing Specifications
An indexing specification allows you to explicitly specify one or more objects by index
position or index range.

Syntax:

expression [{~ | to | thru | through} expression] [, ...]

An index value of zero refers to the first (or top-most) object in the list.

Using any of the ~, to, thru or through keywords between two expressions indicates a
range of objects.

A range that has identical border index values (for example, '5 thru 5') reduces to a single
index, and therefore, a single object.

A reversed range (that is, a larger index value on the left side of the thru keyword than the
value on the right side of it) is treated as if it were not reversed. (Thus, '6 thru 2' is treated
as '2 thru 6'.)

It is not an error to specify index positions for which there are no corresponding objects.

You may freely overlap index ranges and repeat index values or ranges without incurring
performance penalties or errors. srTool reduces the indexing specification to its smallest
possible form before communicating the request to the server. For example, '100 thru 300,
200 thru 400, 300 thru 500' is automatically reduced to '100 thru 500'.

Example:

servers 6, 5 ~ 7, 5 thru 6, 9 to 11 of first context

This specification yields servers 5, 6, 7, 9, 10 and 11.

See also:

“Expressions” on page 50
70 srTool Reference Guide

Objects
SortedBy Clause
The sortedBy clause is used to specify the order of the objects that result from an object
specification.

Syntax:

sortedBy { [sortDirection] propertyName } [, ...]

...where sortDirection must follow this syntax:

ascending | descending | - | +

Specifying ascending (or +) causes objects with property values of lesser magnitude to
appear earlier in the resulting sequence. Specifying descending (or -) causes objects with
property values of greater magnitude to appear earlier.

If the sort direction is not specified, the ordering for the property is assumed to be
ascending.

Examples:

sortedBy ascending name, descending created

sortedBy TimeStamp, messageText

Note If the SortedBy clause is not specified, the object ordering is indiscriminant.

See also:

“srTool Object Reference” on page 135
“Object Properties” on page 66

Whose Clause
The whose clause is used to refer to a subset of objects that match some user-defined
criteria.

Syntax:

whose expression

For each object that causes the expression to result in a logically “true” value (or
non-empty or non-zero or non-null), that object will be included in the resulting object
set.
Chapter 3, Language Reference 71

Objects
Example:

whose name endsWith "xls" or runStage is Dynamic

See also:

“Expressions” on page 50
“Object Properties” on page 66

Compound Object Specifications
Based on the object hierarchy, a number of objects belong to other objects. For example, a
job object can own a pair object. To specify an object that belongs to another, you must use
a compound object specification.

Because these specifications can often grow lengthy, the srTool command shell can utilize
an implicit or default compound object specification for all object specs that are specified
on the srTool command line. The use command is used to inquire about or change the
implied parent object specification.

Syntax:

ObjectSpec [of ObjectSpec] [...]

A compound object specification is one or more simple object specifications separated
by the “of” keyword.

Example:

first rule of job "Roma"

This compound object specification refers to...

the first path rule object that is owned by...

the (first) job object whose name is "Roma" that belongs to ...

the first RMS object (implicitly).

See also:

“srTool Object Hierarchy” on page 64
“use command” on page 129
72 srTool Reference Guide

srTool Command Reference
4

This section provides a detailed description of each srTool command, including their
description, syntax, aliases, required and optional parameters and examples, as
applicable. The commands are presented in alphabetical order.

add command
The add command is used to create and initialize new objects in the replication system.

Syntax:

add [objectCount] objectKind

[to compoundObjectSpec]

[{with | set | setting} propertyAssignmentList]

Aliases:

create, new, make
73

add command
Required Parameters:

Parameter Description

objectKind This specifies the kind of object(s) that will be created.

Optional Parameters:

Parameter Description

objectCount An expression that must result in an unsigned integer value that
specifies the number of objects to create. If the objectCount parameter
is omitted, only one object will be created.

to compoundObjectSpec Specifies the parent object(s), if any, that will contain the new
object(s).

{with | set | setting}
propertyAssignmentList

propertyAssignmentList is ...
propertyAssignment [, ...]
where propertyAssignment is ...
propertyName = expression

This allows the user to specify the initial values of one or more
properties for the new object(s).

Note	 Some properties must be specified when creating certain objects; others cannot be
specified; and some are optional. See “Creating Properties” on page 157.

Examples:

To create four new, one-to-one replication jobs:

create 4 jobs with type = OneToOne

To create a one-to-many job named "My Job":

add job with type=OneToMany, name="My Job"

To add the new replication pair “SRC:TARG” to the job named “Foo”:

add pair to job "Foo" with sourceServer = "SRC",

targetServer = "TARG"

74 srTool Reference Guide

add command
See also:

“Expressions” on page 50

“Object Specifications” on page 67

“Objects” on page 64

Chapter 4, srTool Command Reference 75

begin command
begin command
The begin command starts a new block of commands that has its own local variable
(execution) context. The block is terminated with a corresponding end command.

Syntax:

begin

Aliases:

none

Required Parameters:

none

Optional Parameters:

none

Examples:

This example demonstrates the scope of a variable named x.

x =; ## Undefine x

? x; ## x? Never heard of it!

begin; ## Start new execution context

x = 3.4; ## Define new local variable x

? x; ## x? Sure, I've heard of it!

end; ## x now goes out of scope

? x; ## x? Never heard of it!

See also:

“Execution Contexts” on page 41
“end command” on page 96
76 srTool Reference Guide

break command
break command
The break command terminates the nearest loop, resuming command execution at the
first command past the loop's end.

Syntax:

break

Aliases:

none

Required Parameters:

none

Optional Parameters:

none

Examples:

In this example, on average, there will usually be about ten 'x' characters written to
the standard output stream.

counter = 15

if counter LT 10

comment -- This will be skipped

else

echo %counter is greaterThan or EQ to 10

end if

See also:

“loop command” on page 108
Chapter 4, srTool Command Reference 77

call command
call command
The call command is used to execute a set of srTool commands that are stored in a text
file in the temporary execution context of a new srTool command shell. When the
commands in the file have finished executing, the temporary shell is destroyed, and
execution of commands from within the calling shell is resumed.

Note	 Scripts that are called can be nested to a maximum level that typically cannot
exceed 64.

Parameter data is passed to script files in a set of two or more variables, all of which have
names that start with "param". See “Variables” on page 41 for more information.

The new command shell inherits most of the calling shell’s default object specification and
most of its variables.

Syntax:

call [-hlsob | -nointerface] filePathString [constParameter [...]]

In this form, the parameters are passed verbatim to the called subroutine.

call [-hlsob | -nointerface] filePathString [(expression [,...])]

In this form, each parameter is assumed to be an expression that is evaluated with
each result being passed to the subroutine.

Aliases:

@

Required Parameters:

Parameter Description

filePathString This string constant must contain a valid path to a file that contains
the commands to be executed.

Note: If the file name is "con" or "tty", commands will be read from
the standard input stream.
78 srTool Reference Guide

call command
Optional Parameters:

Parameter Description

-n
-no
-nointerface

This switch specifies that the command interpreter to be used by the
called srTool script utilizes no client interface. The called script
would not be able to inquire about or control any aspect of the
replication system. Note: This option is mutually exclusive to the
-h[l[sob]] option.

-h
-hl
-hlsob

This switch specifies that the command interpreter to be used by the
called srTool script utilizes the high-level client interface. Note: This
option is mutually exclusive to the -n[o[interface]] option.

constParameter This specifies the constant parameter data to be passed to the called
srTool script. There is no limit to the number of constants that can be
passed to the script. Each parameter must be separated from the next
by at least one space.

The parameter data is passed to the script file in a set of two or more
variables, all of which have names that start with "param". See
“Variables” on page 41.

expression This expression determines the parameter data that is to be passed by
value (never by reference) to the called srTool script. There is no limit
to the number of parameters that can be passed to the script. Each
parameter must be separated from the next by a comma.

The parameter data is passed to the script file in a set of two or more
variables, all of which have names that start with "param". See
“Variables” on page 41.

Examples:

In the following example, the srTool commands that are stored in the file

ThrottleDown.txt are executed in the context of a new srTool command shell. The

script will inherit all of the calling shell's variables, its default object specification, and

will have these additional variables available to it:

paramCount will contain the value 2.

param0 will contain the 'string' value "ThrottleDown.txt".

param1 will contain the 'count64' value 50.

call "ThrottleDown.txt" 50

Chapter 4, srTool Command Reference 79

cancel command
See also:

“Variables” on page 41
“Expressions” on page 50
“exec command” on page 97
“spawn command” on page 124

cancel command
The cancel command immediately stops execution of one or more jobs. This differs
substantially from the stop command, which allows the job to finish synchronizing its
targets, and have its targets play out their incoming change journals. It is acceptable to ask
a job that is not running to cancel, and to ask a job that is in the process of canceling to
cancel.

To manually start the job running again, use the start command.

Syntax:

cancel compoundObjectSpec [-target]

Aliases:

none
80 srTool Reference Guide

check command
Required Parameters:

Parameter Description

compoundObjectSpec A compound object specification that results in one or more job
objects

Optional Parameters:

Parameter Description

-target Commands the target server(s) used in the specified job(s) to cancel,
which is useful when the source server(s) are not functioning. The
default is to command the source server(s) of the job(s) to cancel.

Example:

In this example, jobs that were running with errors would be immediately stopped.

cancel every job whose jobState is runningWithErrors

See also:

“Compound Object Specifications” on page 72
“start command” on page 127
“stop command” on page 128

check command
The check command tells whether or not a set of files or folders will be replicated in one
or more replication jobs. The command emits a list of full (absolute) path specifications of
files or folders (or both), each preceded by a '+' or a '-' to the standard output stream. The
'+' indicates the file (or folder) will be replicated; the '-' indicates it will not.

Syntax:

check [-noExcl[udes]] jobObjectSpec for fileOrFolderObjectSpec [, ...]

Aliases:

none
Chapter 4, srTool Command Reference 81

check command
Required Parameters:

Parameter Description

jobObjectSpec A compound object specification that must result in one or more job
objects. These are the jobs against whose rules (pathRules and
selectionRules) will be used to test each file or folder.

fileOrFolderObjectSpec A compound object specification that must result in one or more files
or folders (or subfiles, subfolders, items, or subItems), that will each
be tested for inclusion in the replication job(s).

Optional Parameters:

Parameter Description

-noExcludes
-noExcl

An optional keyword parameter that, if specified, will suppress the
listing of files or folders that are excluded from replication (that is,
only included files will be reported).

Examples:

In this example, a complete report will be generated that tells whether or not every file
and folder on the "C" drive of the server named "Milan" will be replicated by the
"Italy" job.

check job "Italy" for all subItems of vol "C:" of server

"Milan"

This example is identical to the previous example, except that it will only show
replicated files that end in ".DOC" that are on every volume of that same server.

check -noexcl job "Italy" for every subFile whose name

endsWith ".DOC" of every volume of server "Milan"

See also:

“Compound Object Specifications” on page 72

“FileReplicationJob Objects” on page 142

“File Objects” on page 140

“Folder Objects” on page 146

“SourceServer Objects” on page 171

“SubFolder Objects” on page 176

82 srTool Reference Guide

comment command
comment command
The comment command is used only to adorn or document an srTool command script,
and is completely ignored.

Syntax:

comment [anything [...]]

Aliases:

remark, rem, #

Required Parameters:

none

Optional Parameters:

Anything other than a semicolon.

Examples:

Comment -- This is a very simple comment.

######################################

This is a banner-style comment.

######################################

##

This is a banner-style comment.

##

rem This is a remark-style comment.

configure command
The configure command gets or sets configuration settings for various client-side
components of the replication system.
Chapter 4, srTool Command Reference 83

configure command
Syntax:

configure [componentName [configParamList]]

Aliases:

config

Required Parameters:

none

Optional Parameters:

Parameter Description

componentName An identifier that is the name of the software component (for
example, driver) of interest. If omitted, or if the keyword all is used,
the command will apply to all available components.

configParamList A comma-delimited list of one or more configuration parameter
names that is optionally followed by an assignment clause. The list's
syntax is as follows:

{parameterName [= expression]} [, ...]

A parameter name followed by an equal sign (=) must be followed by
an expression, the result of which will be assigned to the named
parameter in each chosen component.

A parameter name that is not followed by an equal sign will display
the value of that named parameter as obtained from the component.

Parameter names not recognized by the software component(s) will
be reported with a warning.

Examples:

This example displays the names of all available client-side components.

configure

This example displays all available configuration information for all available
client-side components.

config all

This example turns up the debug logging level for the job cache component to the
maximum level.
84 srTool Reference Guide

continue command
configure job debugLevel = 3

This example turns off all debug logging for all client-side components. (Note that the
srTool command shell has its own debug logging level, which is controlled by the
shell variable debugLevel.)

config all debugLevel = 0

See also:

“Expressions” on page 50

continue command
The continue command suspends execution of all intervening commands until the end
of the nearest loop is encountered, at which point command execution is restored to the
state when the continue command was encountered.

Syntax:

continue

Aliases:

none

Required Parameters:

none

Optional Parameters:

none

Example:

In this example, on average, there will be about ten 'x' characters written to the
standard output stream.

loop 20 times

if (random() mod 2) EQ 0

continue

Chapter 4, srTool Command Reference 85

count command
end if

echo -n x

end loop

See also:

“loop command” on page 108

count command
The count command emits a count of the number of objects that were specified to the
standard output stream.

Syntax:

count compoundObjectSpec

Aliases:

none

Required Parameters:

Parameter Description

compoundObjectSpec Specifies the object(s) to be counted.

Optional Parameters:

none

Examples:

To display the number of jobs that have no alerts:

count every job whose AlertCount is 0

See also:

“Compound Object Specifications” on page 72
86 srTool Reference Guide

delete command
delete command
The delete command deletes any number of objects of the same kind. It is also used to
delete functions or global variables.

Caution	 srTool does not provide a warning prior to deleting anything with this
command!

Syntax:

delete compoundObjectSpec

This form of the command is for deleting objects.

delete {function | global} {functionName | variableName} [, ...]

This form of the command is for deleting functions or global variables.

Aliases:

del

Required Parameters

Parameter Description

compoundObjectSpec Specifies the object(s) to be deleted.

functionName [, ...] An identifier that specifies the name of each function to be deleted.

variableName [, ...] An identifier that specifies the name of each global variable to be
deleted.

Optional Parameters:

none

Examples:

To delete every replication pair that is in the job named "My Job":

delete every pair of job "My Job"

To delete the user-defined functions named "NumberOfRunningJobs" and "BadPairs":
Chapter 4, srTool Command Reference 87

demote command
delete function NumberOfRunningJobs, BadPairs

To delete the global variables named "gPrimaryServerName" and "TheRMS":

del global gPrimaryServerName, TheRMS

See also:

“Compound Object Specifications” on page 72
“function command” on page 100
“global command” on page 103

demote command
The demote command demotes one or more selection rules, such that they are considered
after other selection rules while qualifying files for replication. To demote a selection rule
to the bottom, it may be necessary to use this command several times, if there are many
selection rules that are inferior to it.

To promote a selection rule, use the promote command.

Syntax:

demote compoundObjectSpec

Aliases:

none

Required Parameters:

Parameter Description

compoundObjectSpec Specifies one or more selection rule objects

Optional Parameters:

none
88 srTool Reference Guide

disable command
Example:

This example demotes all selection rules that specify "*.DOC" for all path rules of all
jobs.

demote all selRules whose nameSpec is "*.DOC" of all rules of

all jobs

See also:

“Compound Object Specifications” on page 72
“promote command” on page 114
“SelectionRule Objects” on page 166

disable command
The disable command disables one or more servers. A disabled server cannot
participate in replication.

Syntax:

disable compoundObjectSpec

Aliases:

none

Required Parameters:

Parameter Description

compoundObjectSpec Specifies one or more server objects.

Optional Parameters:

none

Examples:

In this example, servers that had the name "ADMIN East" and "ADMIN West" would
be disabled.
Chapter 4, srTool Command Reference 89

dump command
disable every server whose name startsWith "ADMIN"

See also:

“Compound Object Specifications” on page 72
“enable command” on page 95
“Server Objects” on page 168

dump command
The dump command recursively emits all known property information about all known
objects to the standard output stream as a series of add and/or set commands. This
provides a way for administrators to reconstruct or duplicate a replication system with a
minimum of manual intervention.

Syntax:

dump [compoundObjectSpec] [-omit objectKind [, ...]] [-a[ll]]

Required Parameters:

none

In the default case, this command dumps all objects — except for servers, volumes,
folders, files, alerts, logEntries, objectKinds, and properties — to the standard
output stream. To include these omitted objects in the dump, use the -all option (see
below).
90 srTool Reference Guide

dump command
Optional Parameters:

Parameter Description

compoundObjectSpec This option restricts the dump to incorporate just those objects that
are specified, and any objects that belong to them (and so on,
recursively), subject to the default or explicit exclusions (that is,
servers, volumes, folders, files, alerts, logEntries, objectKinds, and
properties unless -all is specified).

-omit objectKind [, ...] This option allows you to specify which kinds of contained objects
will be excluded from the dump. By default, only servers, volumes,
folders, files, alerts, logEntries, objectKinds, and properties are
excluded.

-a[ll] This option includes servers, volumes, folders, files, alerts,
logEntries, objectKinds, and properties in the dump unless
specifically excluded with the -omit option.

Examples:

This example dumps all objects (except servers, volumes, folders, files, alerts,
logEntries, objectKinds, and properties), to the standard output stream.

dump

This example dumps only the job named "Foo" and all of its sub-objects (except
licenses, volumes, servers, folders, files, alerts, logEntries, objectKinds, and
properties) to the file "fooRestore.txt".

dump job "foo" -omit license >"fooRestore.txt"

See also:

“Compound Object Specifications” on page 72
“srTool Object Reference” on page 135
Chapter 4, srTool Command Reference 91

echo command
echo command
The echo command emits whatever is on the command line to the standard output
stream.

Syntax:

echo [[-n] [anything [...]] [-x] [expression[, ...]]]

Aliases:

none

Required Parameters:

n/a

Optional Parameters:

Parameter Description

-n This option prevents echo from emitting a newline sequence at the
end of the line written to the output stream.

anything Any srTool token except for the semicolon. The tokens are passed
through uninterpreted and unchanged to the standard output stream
with one difference: all whitespace (if any) between each successive
token is compressed into a single space, or if there was no space
between them, is expanded to a single space.

-x This option causes echo to interpret the rest of its command line
parameters as a comma-delimited list of expressions.

expression An expression that is evaluated, then converted to a string and sent to
the output stream.

Examples:

echo Jane's wagon isn't broken.

Jane s wagon isn t broken .

echo "Jane's wagon isn't broken."

Jane's wagon isn't broken.

92 srTool Reference Guide

else command
echo -x (355.0 / 113.0) as string + "***", now () + 5432 as

timespan

3.14159***Thu Jan 17 11:07:51 2002

See also:

“Expressions” on page 50

else command
The else command terminates a conditionally executed block of commands, and begins
a final one that must itself be terminated by an end command.

Syntax:

else

Aliases:

none

Required Parameters:

none

Optional Parameters:

none
Chapter 4, srTool Command Reference 93

elseif command
Examples:

In this example, the echo command will be executed.

counter = 15

if counter LT 10

comment -- This will be skipped

else

echo Counter is greater than or equal to 10

end if

See also:

“elseif command” on page 94
“if command” on page 105

elseif command
The elseif command terminates a conditionally-executed block of commands, and
begins another block that must be terminated by another elseif command, or by an
else or end command.

Syntax:

elseif expression

Aliases:

none

Required Parameters:

Parameter Description

expression The expression to be evaluated. If the result of the evaluation is not
“0” (zero) or not empty, the commands immediately following the
elseif command will be executed.

Optional Parameters:

none
94 srTool Reference Guide

enable command
Examples:

In this example, the echo command will be executed.

counter = 5

if counter GT 10

comment -- This will be skipped

elseif counter LT 6

echo Counter is less than 6

end if

See also:

“else command” on page 93
“end command” on page 96
“if command” on page 105

enable command
The enable command enables one or more servers. An enabled server can participate in
replication.

Syntax:

enable compoundObjectSpec

Aliases:

none

Required Parameter

Parameter Description

compoundObjectSpec Specifies one or more server objects.

Optional Parameter:

none
Chapter 4, srTool Command Reference 95

end command
Examples:

In this example, servers that had the name "ADMIN East" and "ADMIN West" would
be enabled.

enable every server whose name startsWith "ADMIN"

See also:

“Compound Object Specifications” on page 72
“disable command” on page 89
“Server Objects” on page 168

end command
The end command terminates an execution context, such as a loop, an
if/else/elseif construct, or a function definition.

Any non-global variables that were defined in the context that is terminated by this
command are deleted once execution proceeds past this command.

Syntax

end [anything [...]]

Aliases:

none

Required Parameters:

none
96 srTool Reference Guide

exec command
Optional Parameters:

Parameter Description

anything Any srTool token other than a semicolon. It is recommended that
script authors utilize these tokens to describe which block is being
terminated by the end command.

Examples:

Notice the wise practice of putting 'if' in the end command, to document that the end
command terminates the if.

counter = 5

if counter LT 10

echo Counter is less than 10

end if

Notice the wise practice of putting loop in the end command to document that the
end command terminates the loop.

loop 20 times

add job with type = OnetoOne

end loop

See also:

“begin command” on page 76
“else command” on page 93
“elseif command” on page 94
“if command” on page 105
“loop command” on page 108
“Execution Contexts” on page 41

exec command
The exec command is used to execute a set of commands that are stored in a text file in
the execution context of the current srTool command shell. When the commands in the file
have finished executing, the shell resumes reading subsequent commands from the
original input stream.

Parameter data is passed to script files in a set of two or more variables, all of which have
names that start with "param". See “Variables” on page 41 for more information.
Chapter 4, srTool Command Reference 97

exec command
Syntax:

exec filePathString [constParameter [...]]

In this form, the parameters are passed verbatim to the called script file.

exec filePathString [(expression [,...])]

In this form, each parameter is assumed to be an expression that is evaluated with
each result being passed to the script file.

Aliases:

none

Required Parameters:

Parameter Description

filePathString This string constant must contain a valid path to a file that contains
the commands to be executed.

Note: If the file name is "con" or "tty", commands will be read from
the standard input stream.
98 srTool Reference Guide

exec command
Optional Parameters:

Parameter Description

constParameter This specifies the constant parameter data to be passed to the called
srTool script. There is no limit to the number of constants that can be
passed to the script. Each parameter must be separated from the next
by at least one space.

The parameter data is passed to the script file in a set of two or more
variables, all of which have names that start with "param". See
“Variables” on page 41.

expression This expression determines the parameter data that is to be passed by
value (never by reference) to the called srTool script. There is no limit
to the number of parameters that can be passed to the script. Each
parameter must be separated from the next by a comma.

The parameter data is passed to the script file in a set of two or more
variables, all of which have names that start with "param". See
“Variables” on page 41.

Examples:

This example executes the commands that are stored in the file restore.txt in the
context of the current command shell. The script will have these additional variables
available:

paramCount will contain the value 1.
param0 will contain the 'string' value "restore.txt".

exec "restore.txt"

See also:

“Variables” on page 41
“Expressions” on page 50
“call command” on page 78
“spawn command” on page 124
Chapter 4, srTool Command Reference 99

flush command
flush command
The flush command is used to flush the client software's internal caches.

Syntax:

flush [objectKind [,...]]

Aliases:

none

Required Parameters:

none

Optional Parameters:

Parameter Description

objectKind [,...] One or more objectKinds, separated by commas. If no parameter is
specified, all caches are flushed.

Examples:

flush

This example flushes all of the client's internal caches.

function command
The function command starts a new block of commands that will be used to define a
new function or redefine an existing function.

All functions return a result through the local variable returnValue. If no value is assigned
to this variable, the function's result will be zero (an unsigned integer).

Syntax:

function functionName ([argumentVariableName [, ...]])
100 srTool Reference Guide

function command
Aliases:

none

Required Parameters:

Parameter Description

functionName This must be a valid function name. It identifies the function that will
be called when it is used in an expression. Using the same name as an
existing function will redefine that function.

Optional Parameters:

Parameter Description

argumentVariableName This must be a valid variable name. It identifies the parameter value
passed in to the function by the caller. All parameters are passed in by
value and not by reference.

There is no limit to the number of parameters that a function may
employ.
Chapter 4, srTool Command Reference 101

function command
Examples:

This example defines the function "max", which returns the largest of its two
arguments.

function max (a, b)

if a GT b

returnValue = a

else

returnValue = b

end if

end function max

This example defines the function rand, which returns a pseudo-random number that
is evenly distributed between the specified minValue and maxValue.

function rand (minValue, maxValue)

returnValue = (random () * (maxValue - minValue) /

0x7FFF) as integer + minValue

end function rand

Here's how the function could be called:

echo -x rand (3 * 10 + 4, "2000 widgets" as integer)

The echo command in this case would emit a pseudo-random number that is between
34 and 2000.

Built-in Functions

srTool has several built-in functions. See “Functions” on page 57.

See also:

“Expressions” on page 50
“Variables” on page 41
102 srTool Reference Guide

global command
global command
The global command is used to display, declare or delete shell variables that are global
in scope.

Syntax:

global [identifierName [,...] = [expression]]

Aliases:

none

Required Parameters:

none

Optional Parameters:

Parameter Description

identifierName A valid srTool variable name. See “Variables” on page 3, for
information about names and the rules associated with the naming of
variables.

expression If this parameter is omitted, the specified variables will be deleted.
Otherwise, the specified variables will be assigned the value that
results from the expression.

Examples:

This example emits a set of global commands to the standard output stream, one for
each known global variable. This is useful for displaying the current values of all
global variables.

global

This example assigns zero to both myFlag and currentPosition global variables. If the
variables do not yet exist, they are created.

global myFlag, currentPosition = 0

This example deletes the global variable myGlobal.

global myGlobal =
Chapter 4, srTool Command Reference 103

help command
See also:

“Expressions” on page 50
“Variables” on page 41
“set command” on page 118

help command
The help command provides information about nearly anything in srTool and its current
environment. It can evaluate expressions, as well as provide information about a
command, a data type, a property, a predefined property value, an object kind, expression
operators, and so on

Help can also be obtained for any command by entering the command verb followed by
the ‘?’ character.

Syntax:

help [topic]

Aliases:

?, h

Required Parameters:

none
104 srTool Reference Guide

if command
Optional Parameters:

Parameter Description

topic If omitted, the command brings up a description of srTool with links
that lead the user through the online documentation.

If specified, this parameter can contain nearly anything, including,
but not limited to...

◆ a specific help topic (for example, variables, objects)

◆ an object kind (for example, server)

◆ a command verb (for example, wait, list)

◆ a built-in or user-defined shell variable, local or global in scope

◆ the name of a property (for example, name, id)

◆ the name of a data type (for example, integer, dateTime)

◆ an operator (for example, +, GT)

◆ the name of a built-in or user-defined function

◆ an expression enclosed in parenthesis (for example, (now () GT
WhenShellStarted))

Examples:

This example provides information about the call command.

help call

This example also provides information about the call command.

call ?

The amount of time elapsed since the job named "Blue" last started.

? (now () - lastStarted of job "Blue")

See also:

“show command” on page 122

if command
The if command begins a conditionally-executed block of commands, which is bounded
by an else, elseif or end command.
Chapter 4, srTool Command Reference 105

list command
Syntax:

if expression

Aliases:

none

Required Parameters:

Parameter Description

expression The expression to be evaluated. If the result of the evaluation is not
“0” (zero) or not empty, the commands immediately following the if
command will be executed.

Optional Parameters:

none

Examples:

In this example, the echo command will be executed.

counter = 5

if counter LT 10

echo Counter is less than 10

end if

See also:

“else command” on page 93
“elseif command” on page 94
“end command” on page 96

list command
The list command emits property data from one or more objects to the standard output
stream.
106 srTool Reference Guide

list command
Syntax:

list [-noTable] [[-omit] propertyList [of]] [compoundObjectSpec]

Aliases:

ls, get

Required Parameters:

none

Optional Parameters:

Parameter Description

propertyList A comma-delimited list of property names that identify which
properties are to be shown, or if the -omit option is used, not shown
in the listing (see below). By default, all properties of the resulting
objects are displayed.

compoundObjectSpec A compound object specification that specifies which objects are to be
listed.

-noTable This option causes the data to be displayed ragged, without aligned
columns, and any property data of type string, timespan or dateTime
will be enclosed in quotation marks. The -noTable option will use the
shell's fieldDelimiter variable as the field delimiter that separates
each property in the output, as well as the shell's recordDelimiter
variable to separate each object displayed in the output.

-omit The -omit option assumes that all properties are to be displayed
except for those listed after the omit keyword.

By default, the resulting output is organized into a table, with property data appearing in
columns, in the order that was specified. (A default order is used if no properties were
specified.) If the shell's verbose variable is set to true (or any non-zero or non-null value),
an object count will precede the table, and column headings will appear at the top of the
displayed table. Note that if the resulting table is too wide to fit in your console window,
each line will automatically wrap to the next, and will cause the table to appear garbled.

Examples:

This example lists every property except the "schedule" property of the first job found.
Chapter 4, srTool Command Reference 107

loop command
list -omit schedule first job

This example lists all jobs in tabular format, displaying all properties of each job.

list every job

This example lists just the two properties "name" and "OSVersion" for every server.

get name, OSVersion of every server

This example puts all pair information from the job named "Foo" into a tab-delimited
text file, and then opens the file in Microsoft Excel.

savedFieldDelimiter = fieldDelimiter

fieldDelimiter = "\t"

savedRecordDelimiter = recordDelimiter

recordDelimiter = "\n"

get -noTable all pairs of job "Foo" >"FileToImport.txt"

fieldDelimiter = savedFieldDelimiter

recordDelimiter = savedRecordDelimiter

xl='"C:\\Program Files\\Microsoft Office\\Office10'

!"start " + xl + "\\excel\" FileToImport.txt"

See also:

“Compound Object Specifications” on page 72
“Object Properties” on page 66

loop command
The loop command begins a block of commands that may be repeatedly executed,
depending upon the form of the command that is used.

Syntax:

loop [forever

| while expression

| expression times

| for variableList = startExpression to endExpression [{step | by} incrExpression]

| for variableList in expressionList]

| over compoundObjectSpec]
108 srTool Reference Guide

loop command
... where variableList is a comma-delimited list of variable identifier names that will be
defined and assigned values as the loop executes; and

... where expressionList is a comma-delimited list of expressions that each will be
successively evaluated and whose result is assigned to the loop variable(s) as the loop
executes.

Note	 Any variables specified in the variableList must not be global in scope, nor match the
names of any properties, nor be read-only. It is highly recommended that they not
be defined in any other execution context.

Aliases:

repeat

Required Parameters:

none

Optional Parameters:

See Command Operation, below.

Command Operation:

Commands that are repeated are those that immediately follow the loop command, up
to, but not including, the loop command's corresponding end command.

The loop command has five distinct forms:

◆	 In the loop forever form of the command, or when the loop command appears
without any other parameters (the default condition), results in an "infinite loop" or a
loop that will not terminate without one of the following occurring:

◆ a break command is executed;

◆ the srTool process is terminated;

◆	 in the case of the loop executing in a spawned task, the task is killed via srTool
quitting or an explicit spawn -kill;

◆ a Control-C interrupt occurs.

◆	 In the loop while form, the expression is evaluated once each time prior to re-entering
the body of the loop. If the expression results in a logically true (or non-zero or
non-empty) value, the body of the loop is executed again.
Chapter 4, srTool Command Reference 109

loop command
◆	 In the loop n times form of the command, the expression is evaluated only once prior
to entering the body of the loop. Even if the expression contains a variable whose
value is changed inside the loop, the number of times the loop body will execute is
determined only once at the beginning.

◆	 In the loop for...to...step form of the command, the startExpression, endExpression and
incrExpression (if given) are evaluated once prior to entering the body of the loop, and
the startExpression's result is assigned into each of the loop variables. It is irrelevant if
any of those expressions contain a variable whose value changes inside the loop,
because the expressions are evaluated only once at the beginning.

◆	 In the loop for...in form of the command, each expression in the expressionList is
evaluated once prior to entering the body of the loop. Each time around the loop,
each of the loop variables is assigned the result of the next expression in the
expressionList, in order.

◆	 In the loop over form of the command, every property of each object that results
from the query implied in the compound object specification is assigned to a variable
whose name is the concatenation of "prop" and the name of the property. See the loop
over example below.

Note Because the comma is used as a delimiter for index values in object specifications
and in expression lists in this command, you should avoid using commas in
expression lists because of the ambiguities that may result. For example, the
following script will fail:
loop for x in name of job 0, ID of job 0

? x
end loop

The problem is that the first comma encountered in the loop statement is in an indexing
specification, which is a list of either one expression or two separated by a "thru"
keyword. The indexing specification accepts "ID of job 0" as another index value.
However, its result, a GUID, will not convert to a 64-bit unsigned value, which is what the
indexing specification is looking for.

The solution is to either avoid the use of indexing specification or to use parentheses to
surround the expressions, as shown in the following examples.

loop for x in name of first job, ID of first job

? x

end loop

loop for x in (name of job 0), (ID of job 0)

? x

end loop

110 srTool Reference Guide

loop command
Examples:

In this example, the console window will indefinitely fill with 'x's. It can only be
stopped by terminating the srTool process or interrupting it (via Control-C).

loop

echo -n x

end

This example prints the 10 values of the "counter" variable in the standard output
stream.

loop for counter = 0 to 9

echo -x "counter=" + (counter as string)

end loop

In this example, the variable str finishes by being a string that contains 1,048,576 'x'
characters.

str = "x"

loop 20 times

str = str + str

end loop

In this example, the local variable x changes type and value each time through the
loop.

loop for x in 1,pi,now(),now()-whenShellStarted, name of

first job,ID of job 0

? x

end loop

In this example, 15 pairs are added to a centralization job named "TestJob". Note that
the properties of each of the 15 servers are treated as local variables inside the loop.

targ = name of server "HP"

jobID = id of job "TestJob"

loop over last 15 servers whose name startsWith "DELL"

add pair to job %jobID with sourceServer = propName,

targetServer = targ, throttle = If (PropOSMajorVersion

EQ 4, 50, 100)

end loop

In this example, the last server in the server list is the target, and all other servers are
sources for all jobs. Note that the properties of each server are referred to by a local
variable whose name is "prop" followed by the property name.
Chapter 4, srTool Command Reference 111

monitor command
loop over first ’count all servers of first RMS’ - 1 servers

add pair to all jobs whose type EQ ManyToOne with

sourceServer = propName,

targetServer = name of last server

end loop

See also:

“continue command” on page 85
“begin command” on page 76
“break command” on page 77

monitor command
The monitor command is used to monitor object activity in the replication system.
Creations and deletions of objects, and object changes are displayed in the srTool console
window.

Syntax:

monitor {compoundObjectSpec [, ...] | {list | show} | {stop | pause | resume}
{indexingSpec | all }

Notes:

◆	 It is possible to actively monitor the same kinds of objects more than once, in
which case the console window will receive duplicate messages for single
add/change/delete events. srTool will detect identical object specifications, and
prevent the creation of a duplicate; however, it is easy to compose different object
specifications whose result sets match.

◆	 Each monitored object specification (query) will be associated with an unsigned
whole number that is unique to that query. That number is used to refer to the
query being monitored in order to stop, pause or resume its monitoring.

Aliases:

mon

Required Parameters:

none
112 srTool Reference Guide

monitor command
Optional Parameters:

Parameter Description

compoundObjectSpec Determines which objects will be monitored.

indexingSpec Provides a list of one or more "monitor numbers" or ranges of
"monitor numbers".

list Displays what is being monitored and indicates the state of each
query (whether paused or not, and, if paused, a count of the number
of saved messages).

stop indexingSpec Stops the specified monitor(s), permanently removing it from the
active list. Any saved messages associated with paused monitor
queries are lost.

pause indexingSpec Pauses the specified monitor(s). Any messages associated with it
(them) are saved for later playback using resume.

resume indexingSpec Resumes the specified monitor(s). Any saved messages associated
with it (them) are emitted to the shell’s output stream.

Examples:

This example starts monitoring all job and server activities.

mon all jobs, all servers

This example monitors all pairs that use the target server "LOGAN01", and only for
those jobs whose names begin with "Boston".

mon all pairs whose name endsWith ":LOGAN01" of every job

whose name startsWith "Boston"

This example immediately stops all monitoring completely.

mon stop all

Each of these examples will show what is currently being monitored.

monitor; monitor list; monitor show

This example pauses monitoring of the object(s) associated with the number 15, then
immediately resumes monitoring them, as well as any paused monitors with the
monitor values of 2, 3, 4 and 8.

monitor pause 15; monitor resume 8, 15, 2 thru 4

Chapter 4, srTool Command Reference 113

pause command
See also:

“Compound Object Specifications” on page 72
“Indexing Specifications” on page 70

pause command
Reserved for future use.

Syntax:

pause compoundObjectSpec

Aliases:

none

Required Parameters:

Parameter Description

compoundObjectSpec The compoundObjectSpec must refer to one or more jobs.

Optional Parameters:

none

promote command
The promote command promotes one or more selection rules, such that they are
considered before other selection rules while qualifying files for replication. To promote a
selection rule to the top, it may be necessary to use this command several times if there are
many selection rules that are superior to it.

To demote a selection rule, use the demote command.

Syntax:

promote compoundObjectSpec
114 srTool Reference Guide

quit command
Aliases:

none

Required Parameters:

Parameter Description

compoundObjectSpec Specifies one or more selectionRule objects.

Optional Parameters:

none

Example:

This example promotes all selection rules that specify "*.DOC" for all path rules of all
jobs.

promote all selRules whose nameSpec is "*.DOC" of all rules

of all jobs

See also:

“Compound Object Specifications” on page 72
“demote command” on page 88
“SelectionRule Objects” on page 166

quit command
The quit command terminates the currently running command shell. If the shell’s
nesting level is 1 and the shell was not created using the spawn command, srTool will
terminate and return control to the host operating system.

Syntax:

quit

Aliases:

q, exit

Chapter 4, srTool Command Reference 115

resume command
Required Parameters:

none

Optional Parameters:

none

Examples:

q

This terminates srTool and returns control to the operating system (assuming the
command shell’s nesting level is 1).

See also:

nestingLevel in “Built-in Variables” on page 43

resume command
Reserved for future use.

Syntax:

resume compoundObjectSpec

Aliases:

none

Required Parameters:

Parameter Description

compoundObjectSpec The compoundObjectSpec must refer to one or more jobs.

Optional Parameters:

none
116 srTool Reference Guide

select command
select command
The select command writes the result of one or more expressions, each computed from
the values of one or more properties of each object that results from the object
specification to the output stream.

Syntax:

select {expression [, ...]} [from compoundObjectSpec]

For each object that results from the object specification, each expression is evaluated in the
context of that object, and the value that results from each expression is written to the
standard output stream, each separated by the value of the shell’s fieldDelimiter variable.

Successive objects are separated in the output stream by the value of the shell's
recordDelimiter variable.

Aliases:

none

Required Parameters:

none

Optional Parameters:

Parameter Description

compoundObjectSpec The object specification specifies the objects whose property data is to
be used when evaluating the expressions or comparisons. It also
determines the order of the resulting objects.

expression Each expression that is specified determines what information is to be
displayed for each resulting object.

If more than one expression is specified, their results are separated in
the output stream by the value of the shell's fieldDelimiter variable.

Examples:

This example lists the name of each running job and how long ago each was started.

select name, now () - lastStarted from all jobs whose

jobState EQ Running

Chapter 4, srTool Command Reference 117

set command
This example displays the name of each running job and how long before the most
recently started running job each was started. The jobs that were started closest to the
most recently started one are listed first.

select name, (lastStarted of first job whose jobState EQ

Running sortedBy descending lastStarted) - lastStarted from

all jobs whose jobState EQ Running sortedBy lastStarted

See also:

“Expressions” on page 50

“Compound Object Specifications” on page 72

set command
The set command is used to change the value of a mutable property of one or more
objects, or to add, change or delete shell variables (local or global).

Syntax:

set

This form displays all currently defined shell variables.

set propertyName [, ...] of compoundObjectSpec {to | =} expression

This form sets the values of any mutable properties of one or more objects.

set {propertyName = expression} [, ...] for compoundObjectSpec

This form sets the values of any mutable properties of one or more objects.

[set] variableName [, ...] = [expression]

This form adds, changes or deletes a shell variable. If the expression is omitted,
the variable will be deleted.

Aliases:

none

Required Parameters:

none
118 srTool Reference Guide

set command
Optional Parameters:

Parameter Description

compoundObjectSpec Specifies which object(s) to modify.

expression An expression whose result is the value stored in the object property
or variable.

propertyName The name of the mutable property of the existing object(s) to be
changed.

variableName The name of a mutable variable that will receive the expression
results.

Examples:

This example emits the commands that would define the currently defined global and
local shell variables to the standard output stream. Read-only variables are placed in
comment commands. This is useful for displaying the current values of all variables,
and also for saving and restoring their values (by redirecting the output into a file,
then later executing the file using the exec command).

set

This example sets the Description property of a randomly selected job to the string
value "For testing only".

set description of any job to "For testing only"

This example assigns the result of the expression 355.0 divided by 113.0 to all three of
the variables piEstimation, foo and bar. (Note that the set command verb is not
required to assign shell variables.)

piEstimation, foo, bar = 355.0 / 113.0

This example deletes the local variables piEstimation and foo.

set piEstimation, foo =

See also:

“Expressions” on page 50

“Compound Object Specifications” on page 72

“Object Properties” on page 66

“Variables” on page 41

Chapter 4, srTool Command Reference 119

shell command
shell command
The shell command escapes the srTool command shell and executes an external
command using the temporary context of the native operating system's command
interpreter.

Note	 The standard output and diagnostic streams of srTool and the host shell are
completely independent of each other.

Syntax:

shell expression

Aliases:

!

Required Parameters:

Parameter Description

expression The result of the expression (which is expected to be a string),
specifies the native host operating system command, including all
parameters, to be executed.

Optional Parameters:

none

Examples:

This Microsoft Windows example displays the contents of the directory "winnt" on the
local machine's "C" drive.

shell "dir C:\winnt\"

This Microsoft Windows example appends only the directories inside of the
"Windows" directory on the local machine's "C" drive to a file in the current directory
named "a.out". Note the use of a pipe and an append-style output redirection, all of
which are passed verbatim to the host command shell using a single-quoted character
string in srTool.

! 'dir C:\\windows\\ | find "<DIR>" >>a.out'

120 srTool Reference Guide

shift command
shift command
The shift command shifts data values stored in higher-numbered parameter variables
into lower-numbered ones, overwriting their previous contents. Typically, this is used in a
Loop to interrogate parameters one-by-one that were passed into scripts that were called
(or executed or spawned).

Syntax:

shift [countExpression]

Aliases:

none

Required Parameters:

none

Optional Parameters:

Parameter Description

countExpression This is an expression that should result in an unsigned integer value.
This value determines the number of positions that the parameter
variables will be shifted down by.

If this parameter is not specified a default value of 1 is used.

Examples:

In this example, all higher-numbered parameter variables are shifted into the next
lower-numbered ones.

shift

See also:

“call command” on page 78
“Variables” on page 41
“Expressions” on page 50
Chapter 4, srTool Command Reference 121

show command
show command
The show command displays information about what commands, properties, object
kinds, predefined values, expression operators and data types are available in srTool.

Syntax:

show [commands

| drivers

| function[s] [functionName]

| globals

| objects

| operators

| properties [of objectKind]

| types

| values [of propertyName]

| variables

| verbs

| versions]

Aliases:

none

Required Parameters:

none
122 srTool Reference Guide

show command
Optional Parameters:

Parameter Description

commands Displays all available commands in alphabetical order:

show commands

drivers Displays the names of all installed drivers that srTool can configure
using the configure command.

show drivers

function[s]
[functionName]

Displays all currently defined functions, or only the specified one.

show functions
show function Foo

globals Displays all currently active global functions.

show globals

objects Displays the complete object containment hierarchy for the
replication system.

show objects

operators Displays the available operators that can be used in srTool
expressions, both unary and binary.

show operators

properties Displays a comprehensive list of all available properties and the
object kinds that incorporate them.

show properties

properties [of
objectKind]

Displays just those properties associated with server objects.

show properties of server

types Displays the available data types that are known to srTool.

show types

values [of
propertyName]

Displays all available pre-defined values that are known to srTool.

show values of jobState

variables Displays all non-global variables for each of the currently active
execution contexts.

show variables
Chapter 4, srTool Command Reference 123

spawn command
Parameter Description

verbs Displays all available commands in alphabetical order.

show commands
show verbs

versions Displays the versions of the currently installed replication software.

show version

Examples:

See Optional Parameters, above.

spawn command
The spawn command is used to execute a single command or a set of commands that are
stored in a text file in the execution context of a new command shell that runs
concurrently with the calling shell. When the commands in the file have finished
executing, the shell is automatically destroyed.

There is a preset limit on the maximum number of concurrently running command shells.

Note	 Unless output redirection is specified on the commands inside the script file, all
standard and diagnostic output from commands get sent to the 'NULL' device, and
cannot be captured or recovered.

Parameter data is passed to script files in a set of two or more variables, all of which have
names that start with "param". See “Variables” on page 41 for more information.

The new command shell inherits most of the calling shell’s variables, as well as its default
object specification.

Syntax:

spawn [-hlsob | -nointerface] filePathString [constParameter [...]]

... or ...

spawn [-hlsob | -nointerface] filePathString [(comparison [,...])]

This form is used to spawn a script using expressions to generate the parameter
data.

... or ...
124 srTool Reference Guide

spawn command
spawn [-hlsob | -nointerface] {-list | -kill [all | taskNum] | -c command | -x
expression }

This form is used to execute one srTool command (using -c) or several commands
(using -x) as a background task, or to list background tasks or kill them.

Aliases:

&

Required Parameters:

The following required parameters are mutually exclusive (that is, they may not be
used in combination with one another).

Parameter Description

filePathString This string constant must contain a valid path to a file that contains the
srTool commands to be executed. A file name of "con" or "tty", is not
allowed, unlike call or exec.

-c command This specifies the one command to be executed as a background task.

-x expression This specifies one or more commands to be executed as a background
task. The expression must result in a single text value that contains the
srTool command line to execute.
Chapter 4, srTool Command Reference 125

spawn command
Optional Parameters:

Parameter Description

-n
-no
-nointerface

This specifies that the command interpreter to be used by the spawned
script utilizes no client interface. The spawned script would not be
able to inquire about, or control any aspect of the replication system.

Note: This option is mutually exclusive to the -h[l[sob]] option.

-h
-hl
-hlsob

This switch specifies that the command interpreter to be used by the
spawned srTool script utilizes the high-level client interface.

Note: This option is mutually exclusive to the -n[o[interface]] option.

constParameter This specifies the constant parameter data to be passed to the spawned
srTool script. There is no limit to the number of constants that can be
passed to the script.

expression This expression determines the positional parameter data that is to be
passed by value to the spawned srTool script. There is no limit to the
number of parameters that can be passed to the script.

-list Displays a list of tasks that are currently running or are completed.

-kill [all] [all |
taskNum]

Terminates the currently running task identified by the given task
number, or all running tasks if all was specified. TaskNum must be an
unsigned decimal constant.

Examples:

These two examples execute the one command "start all jobs of first rms" as a
background task:

&-c start all jobs of first rms

&-x "start all jobs of first rms"

This example lists the currently running tasks to the standard output stream, one per
line:

spawn -list

This example terminates the task whose number is 7 without waiting for it to
complete:

spawn -kill 7

This example terminates all running background tasks:

spawn -kill all

126 srTool Reference Guide

start command
The following example executes the srTool commands that are stored in the file
"MyScript.txt" in the context of a new srTool command shell that will run
concurrently with the calling shell. The script will inherit all of the calling shell's
variables. In addition, the following variables will be defined for it:

paramCount will contain the numeric value 1.
param0 will contain the string value "MyScript.txt".
param1 will contain the numeric value 8.
param2 will contain the string value "35".
param3 will contain the name of the first RMS object.

spawn "MyScript.txt" (3 + 5, "3" + "5", name of first RMS)

See also:

“Expressions” on page 50
“Variables” on page 41
“call command” on page 78
“exec command” on page 97

start command
The start command starts execution of one or more jobs. To manually stop a running
job, use the stop or cancel command. It is not an error to start a job that is already
starting or running.

Syntax:

start compoundObjectSpec

Aliases:

none
Chapter 4, srTool Command Reference 127

stop command
Required Parameters:

Parameter Description

compoundObjectSpec The compoundObjectSpec must refer to one or more jobs.

Optional Parameters:

none

Example:

In this example, only jobs that were stopped would be started.

start every job whose jobState is stopped

See also:

“Compound Object Specifications” on page 72
“cancel command” on page 80
“stop command” on page 128

stop command
The stop command stops execution of one or more jobs after it finishes synchronizing its
targets, and the targets play out any pending incoming changes. This differs substantially
from the cancel command, which immediately terminates synchronization. It is not an
error to stop a job that is already stopped.

To manually start the job running again, use the start command.

Syntax:

stop compoundObjectSpec

Aliases:

none
128 srTool Reference Guide

use command
Required Parameters:

Parameter Description

compoundObjectSpec The compoundObjectSpec must refer to one or more jobs.

Optional Parameters:

none

Example:

In this example, jobs that were running without any errors would eventually be
stopped.

stop every job whose jobState is running

See also:

“Compound Object Specifications” on page 72
“cancel command” on page 80
“start command” on page 127

use command
The use command allows you to specify a default compound object specification for
srTool to use in evaluating compound object specifications used in subsequent
commands. This can save significant amounts of typing.

Note	 srTool's command shell will ignore the default object specification if you specify a
compound object specification that terminates in a root-level object.

Syntax:

use [none | compoundObjectSpec]

Aliases:

none
Chapter 4, srTool Command Reference 129

use command
Required Parameters:

none

Optional Parameters:

Parameter Description

none Specifying this keyword causes the current srTool command shell to
discard its current default object specification. Specifying object
specifications in subsequent commands would require them to be
completely specified from a root-level object.

compoundObjectSpec An absolute object specification (that is, one that terminates in a
root-level object) which will be appended to all compound object
specifications used in subsequent commands.

Note	 This command can also help you avoid certain ambiguities in the syntax for object
specifications. See“Operators” on page 54, for more information.

If no parameters are specified, the command will display the command shell’s current
default compound object specification.

Examples:

This example sets srTool's default object specification to Job "Foo" of RMS "Master",
which will be appended to any object specification used in subsequent commands.

use job "Foo" of rms "Master"

Thus, instead of having to type

list all pairs of job "Foo" of RMS "Master"

you would only have to type

list all pairs

to have the same effect.

This example eliminates srTool's default object specification, requiring object
specifications used in subsequent commands to be completely specified from a
root-level object:

use none

This example displays srTool's current default object specification to the standard
output stream:
130 srTool Reference Guide

wait command
use

See also:

“Object Specifications” on page 67
“Compound Object Specifications” on page 72
“Operators” on page 54

wait command
The wait command efficiently suspends subsequent command execution until some
criteria is satisfied, or until a specified amount of time has passed.

Syntax:

wait {until expression [for timeExpression]} | timeExpression

Aliases:

none
Chapter 4, srTool Command Reference 131

wait command
Required Parameters:

Parameter Description

until expression An arbitrary expression that determines when the command will
complete. When the expression becomes logically true, waiting will
cease, and command execution will continue.

If this is not a specified parameter, the timeExpression (below) must be
used.

timeExpression An arbitrary expression that can convert to a timeSpan, which
determines the amount of time the command will wait.

If this is not specified, the until parameter (above) must be used.

Optional Parameters:

Parameter Description

for [timeExpression] If no 'for' clause follows the 'until' expression, the command will wait
for the condition to become logically true for 7 days (the default value).
otherwise the command will wait for the specified amount of time.

Examples:

This example delays subsequent command execution by 3 seconds:

wait "3 seconds"

This example will wait for the default period of 7 full days:

wait until 1 GT 2

This example waits until the job named "Foo" is no longer running, or 6-1/2 hours,
whichever occurs first:

wait until jobState of job "Foo" NE running and jobState of

job "Foo" NE runningWithErrors for "6.5 hours"

See also:

“Expressions” on page 50
132 srTool Reference Guide

xml command
xml command
The xml command emits XML data from one or more objects or an expression to the
standard output stream.

Syntax:

xml {[-src] [-raw] {compoundObjectSpec}} | {-x expression}

Aliases:

none

Required Parameters:

Parameter Description

compoundObjectSpec This specifies the object(s) to be listed in XML format.

-x expression The -x option indicates that an expression will be specified instead
of an object specification.

Optional Parameters:

Parameter Description

-src The -src option only displays the XML equivalent of the given
object specification or expression, instead of the objects or data
resulting from its evaluation.

-raw The -raw option specifies that unformatted XML is to be used (that
is, without any indenting or line breaks).
Chapter 4, srTool Command Reference 133

xml command
Examples:

This example dumps all properties of three randomly chosen jobs in XML format.

xml any 3 jobs

See also:

“Expressions” on page 50

“Compound Object Specifications” on page 72

134 srTool Reference Guide

srTool Object Reference
5

This section provides a detailed description of each srTool object, including their
properties. Examples are also included for discovering, adding, changing and deleting the
objects.

Alert Objects
An alert is a timely message of some importance, that is, a problem or condition, posted
by the replication system for evaluation by the end user. Alerts are obtained from the RMS
object. Alerts are generated internally by the replication system and cannot be created by
srTool or the Console.

Aliases:

Alerts

Alert Properties

Most alert properties are constant, and cannot be modified using the set command.

Property Name Data Type Access Description

AssocObjID uniqueID Constant The globally unique identifier of the object
that is associated with the alert.

AssocObjName string Constant The name of the object that is associated with
the alert.

AssocObjType uint32 Constant The kind of object associated with the alert.
This corresponds to the OrdinalValue
property of the objectKind meta object. See
“ObjectKind Objects” on page 153.
135

Alert Objects
Property Name Data Type Access Description

Description string Constant The alert’s description.

GroupCode uint32 Constant The group code of the alert.

HasBeenDeleted uint32 ReadOnly True if the alert has been marked for
deletion, false if not.

HasBeenRead uint32 Mutable True if the alert has been marked as read,
false if not.

ID uniqueID Constant The alert’s message text.

MessageText string Constant The human-readable text of the alert.

OrigServerID uniqueID Constant The globally unique identifier of the server
that created the alert.

OrigServerName string Constant The name of the server that created the alert.

Severity uint32 Constant The severity code of the alert.

TextID uint32 Constant The unique identier of the alert's text
message.

TimeStamp dateTime Constant The time and date the alert was created.

Discovering Alerts

Use the list or selects command to inquire about alerts in the replication
environment:

list all alerts

This example shows the 10 most recent alerts, and identifies the objects that generated
them:

select TimeStamp, (name of first objectKind whose ordinalValue

EQ assocObjType) + ‘ " ’ + assocObjName + ‘ " ’, description

from first 10 alerts sortedBy descending timeStamp

Changing Alerts

Use the set command to change any writeable property on a particular alert:

set hasBeenRead of first 50 alerts to true
136 srTool Reference Guide

Credential Objects
Deleting Alerts

Use the delete command to remove alerts from the RMS. This example deletes all alerts
that are more than three days old:

delete all alerts whose TimeStamp LT (now () - "3 days" as

timespan)

Credential Objects
A credential is used internally by the VRE 3.1 console and srTool to connect to servers that
do not belong to the workgroup or domain of the VRE 3.1 administrator user. Credentials
are root-level objects.

Note Credentials are not validated until used.

Aliases:

Credentials

Credential Properties

All credential properties are constant, and cannot be modified with the set command.

Property
Name

Data Type Required to
Create

Description

Domain string Yes The name of the domain, if any, the user
belongs to. Note: If there is no domain, the
domain option is also required using the
following format: -domain= ""

Password byteArray Yes The encrypted password for this credential.

ServerName string Yes The name of the computer this credential
applies to. If empty, it will apply to all
computers.

UserName string Yes The name that identifies the user to the domain
and/or computer.
Chapter 5, srTool Object Reference 137

DestinationRule Objects
Discovering Credentials

Use the list or select command to inquire about credentials:

list all credentials

Creating Credentials

Use the add command to create a new credential or to replace an existing credential for a
given domain and server:

add credential with serverName = "Rome", Domain = "My Domain",

userName = "Joe", password = Encrypt ("Joe’s password")

Changing Credentials

Once created the individual properties of a credential cannot be changed. However an
existing credential with a given serverName can be replaced with a different userName,
password, and domain.

Deleting Credentials

Use the delete command to delete credentials:

delete credentials 2 thru 4

DestinationRule Objects
A DestinationRule is an object that identifies a directory root and its target server that will
receive the replicated files and folders. DestRules belong to PathRule objects.

Aliases:

DestinationRules, DestRule, DestRules
138 srTool Reference Guide

DestinationRule Objects
DestinationRule Properties

Some destinationRule properties are constant or read-only, and cannot be modified using
the set command.

Property Name Data Type Required
to Create

Access Description

ID uniqueID No Constant The globally unique identifier of the
DestinationRule.

Name string No ReadOnly A string containing the synthesized name
of the DestinationRule.

OwnerID uniqueID No Constant The globally unique identifier of the
PathRule object that owns this
DestinationRule.

ControllerID uniqueID No Constant The globally unique identifier of the job
object that controls this DestinationRule.

TargetServerID uniqueID No Mutable The globally unique identifier of the target
server.

TargetServer string Yes Mutable The name of the target server.

Path string Yes Mutable The absolute, volume-rooted path that
identifies where replicated data will go.

Discovering DestinationRules

Use the list or select command to inquire about destinationRules in a particular
PathRule:

get name of every destinationRule of every rule of job "Foo"

Creating DestinationRules

Use the add command to create DestinationRules for a particular PathRule:

use first pathRule of first job of first rms

add destrule with targetServer = "Test1", path = "C:\\replica"

Note that in order to create a DestinationRule, you must identify the target server and the
path on that server where replicated files will go.
Chapter 5, srTool Object Reference 139

File Objects
Changing DestinationRules

Use the set command to change any writeable property on a particular DestinationRule:

use first pathRule whose Path EQ "C:\\data" of first job of

first rms

set path of every destinationRule to "C:\\replica"

Deleting DestinationRules

Use the delete command to remove DestinationRules from a particular PathRule:

use all pathRules of first job of first rms

delete all destRules whose name startsWith "\\\\TestServer1"

File Objects
File objects represent files kept on any volume or a server. File objects can be obtained
from folder or volume objects.

Aliases:

Files

File Properties

All file properties are constant and cannot be modified using the set command.

Property Name Data Type Description

Accessed dateTime The date and time that the file was last accessed.

Created dateTime The date and time that the file was created.

Depth uint32 The depth (valence) of the file in the hierarchy.

FullPath string The full path to the file.

IsArchive uint32 True if archive bit is set.

IsCompressed uint32 True if the file is compressed.
140 srTool Reference Guide

File Objects
Property Name Data Type Description

IsContainer uint32 True if the file is a container (folder). This
property is always false.

IsEncrypted uint32 True if the file is encrypted.

IsHidden uint32 True if the file is hidden.

IsOffline uint32 True if the file is offline.

IsReadOnly uint32 True if the file is read-only.

IsReparsePoint uint32 True if the file is a reparse point.

IsSparseFile uint32 True if the file is a sparse file.

IsSystem uint32 True if the file is a system file.

IsTemporary uint32 True if the file is temporary.

Modified dateTime The date and time that the file was last modified.

Name string The name of the file, including its extension, if
any.

ServerName string The name of the server on which the file can be
found.

Size uint64 The size of the file, in bytes.

Discovering Files

Use the list or select command to inquire about files in a particular volume or folder:

get fullPath of every file of volume C: of server “Foo”

Creating Files

Files cannot be created using srTool.

Changing Files

Files cannot be changed using srTool.
Chapter 5, srTool Object Reference 141

FileReplicationJob Objects
Deleting Files

Files cannot be deleted using srTool.

FileReplicationJob Objects
A FileReplicationJob is a named object that has a schedule that can replicate data between
source and target server machines. Jobs contain all the information necessary to facilitate
replication for a given set of source and target servers and the files and folders to be
replicated. This job information is kept in a database on the Replication Management
Server (RMS). Thus, job objects "belong" to an RMS.

Jobs contain three other kinds of objects: ReplicationPairs, PathRules and LogEntries.

Aliases:

FileReplicationJobs, Job, Jobs

Job Properties

Many job properties are constant or read-only, and cannot be modified using the set
command. However, there are several that can be changed:

Property Name Data Type Required
to Create

Access Description

AlertCount uint32 No ReadOnly The number of alerts posted for the
job.

AlertWhenConsistent uint32 No Mutable Controls when an information alert
will be generated when a Target of a
pair reaches the consistent state at the
end of synchronization. The default
value is "false".

ClusterID string No ReadOnly For private use by VCS or MSCS.

ClusterName string No ReadOnly For private use by VCS or MSCS.

ClusterType uint32 No ReadOnly For private use by VCS or MSCS.
142 srTool Reference Guide

FileReplicationJob Objects
Property Name Data Type Required
to Create

Access Description

CurrentExecutingOpe
ration

uint32 No ReadOnly For internal use only.

Description string No Mutable A string containing the job's
description.

Enabled uint32 No ReadOnly True if the job is currently enabled;
false if not. (Enabled means "available
to run at its next scheduled time".)

ID uniqueID No Constant The globally unique identifier of the
job.

IsClusterOwned uint32 No ReadOnly For private use by VCS or MSCS.

IsSyncedWithJCD uint32 No ReadOnly For internal use only.

JCDServerID uniqueID No ReadOnly The unique identifier of the job
control delegate server of the job.

JCDServerName string No ReadOnly The name of the job control delegate
server for the job.

JobState uint32 No ReadOnly A value that indicates the current
state of the job: NeverRun, Canceled,
CanceledWithErrors, Expired,
ExpiredWithErrors, Completed,
CompletedWithErrors, Starting,
Running, RunningWithErrors,
Pausing, Paused, Resuming, Rallying,
Canceling, Expiring, Completing.

LastAddedOperation
Request

uint32 No ReadOnly For internal use only.

LastStarted dateTime No ReadOnly The date and time when the job was
last started.

MappingMethod uint32 No Mutable A value that specifies the mapping
method to use during replication for
the job: PrependSourceServerPath,
PrependSourceRootDirPath,
PrependSourceImmediateParent or
PrependNone.
Chapter 5, srTool Object Reference 143

FileReplicationJob Objects
Property Name Data Type Required
to Create

Access Description

Name string No Mutable A string containing the name of the
job. When creating new jobs, you do
not need to provide a name; the
replication system will invent a
unique one for you. If you do specify
one, it must be unique among all
other jobs.

NextPendingOperatio
nRequest

uint32 No ReadOnly For internal use only.

NoChgsOnTarget uint32 No Mutable True if the job is to enforce read-only
targets when the job is running, or
false if not.

NoDynamicJournal uint32 No Mutable True if changes that occur to the
sources during synchronization are
not saved and later replayed on the
target.

OwnerID uniqueID No Constant The globally unique identifier of the
object that owns this job.

PairCount uint32 No ReadOnly The number of replication pair
objects that belong to the job.

PendingUpdateCount uint32 No ReadOnly For internal use only.

Prescan uint32 No Mutable True if the job is to prescan the source
files to be able to accurately estimate
when initial synchronization will
complete; false if not.

RealTime uint32 No Mutable True if the job is to enter dynamic
mode after initial synchronization;
false if not.

Schedule byteArray No Mutable A bit mask that specifies the job's
schedule in which each bit indicates
"eligible" (1) or "ineligible" (0) to run.
Each bit represents a 30-minute time
span. The entire blob must be exactly
336 bits long, thus representing a
7-day (week-long) schedule.
144 srTool Reference Guide

FileReplicationJob Objects
Property Name Data Type Required
to Create

Access Description

ScheduledStopsCance
l

uint32 No Mutable If true, jobs cancel abruptly instead of
gracefully when the job’s schedule
window closes.

SyncReportFilenames uint32 No Mutable Controls if the synchronization report
of the respective pairs of a job will
contain the names of synchronized
files. The default value is "false".

TargetReplicaType uint32 No ReadOnly A value that specifies the target
replica type for the job: Pure,
Qualified, Merge or UpdateOnly.

Type uint32 Yes Constant A value that specifies the job
topology OneToOne, OneToMany or
ManyToOne.

Discovering Jobs

Use the list or select command to inquire about jobs on a particular RMS:

list all jobs

get name, jobState of every job

Creating Jobs

Use the add command to create jobs on a particular RMS:

add job with name = "Test", type = OneToMany

Note	 In order to create a job, you must specify a value for its 'type' property, which can be
OneToOne, OneToMany, or ManyToOne.

Changing Jobs

Use the set command to change any writeable job property:

set name of job "Foo" to "Bar"
Chapter 5, srTool Object Reference 145

Folder Objects
Deleting Jobs

Use the delete command to remove jobs from a particular RMS:

delete every job whose realTime is true

Controlling Jobs

Use the start, stop or cancel commands to start, stop or cancel jobs:

start every job whose jobState NE running AND jobState NE

runningWithErrors

Folder Objects
Folders are directories located inside volumes on any given server. Folders can be
obtained from other folder or volume objects. A folder may contain other folders or files.

Aliases:

Folders

Folder Properties

All folder properties are constant, and cannot be modified using the set command.

Property Name Data Type Description

Accessed dateTime The date and time that the folder was last accessed.

Created dateTime The date and time that the folder was created.

Depth uint32 The depth (valence) of the folder in the hierarchy.

FullPath string The full path to the folder.

HasContainers uint32 True if the folders contain any folders.

HasFiles uint32 True if the folders contain any files.

IsArchive uint32 True if the archive bit is set.
146 srTool Reference Guide

Folder Objects
Property Name Data Type Description

IsCompressed uint32 True if the folder is compressed.

IsContainer uint32 True if the folder is a container (folder). This property is
always true.

IsEncrypted uint32 True if the folder is encrypted.

IsHidden uint32 True if the folder is hidden.

IsOffline uint32 True if the folder is offline.

IsSystem uint32 True if the folder is a system folder.

IsVolume uint32 True if the folder is a volume. This property is always
set to false.

Modified dateTime The date and time that the folder was last modified.

Name string The name of the folder, including its extension, if any.

ServerName string The name of the server on which the folder can be
found.

Discovering Folders

Use the list or select command to inquire about folders:

list all folders of volume "C:" of server "FOO"

Creating Folders

Folders cannot be created using srTool.

Changing Folders

Folders cannot be changed using srTool.

Deleting Folders

Folders cannot be deleted using srTool.
Chapter 5, srTool Object Reference 147

Item Objects
Item Objects
Items are folder or file objects, which allow the user to obtain either one in a single query.
Items come from folder or volume objects.

Aliases:

Items

Item Properties

All item properties are constant and cannot be modified using the set command.

Property Name Data Type Description

Accessed dateTime The date and time that the item was last accessed.

Created dateTime The date and time that the item was created.

Depth uint32 The depth (valence) of the item in the hierarchy.

FullPath string The full path to the item.

HasContainers uint32 True if the item contains any folders.

HasFiles uint32 True if the item contains any files.

IsArchive uint32 True if the archive bit is set.

IsCompressed uint32 True if the item is compressed.

IsContainer uint32 True if the item is a container (folder)., false if it is a
file.

IsEncrypted uint32 True fi the item is encrypted.

IsHidden uint32 True if the item is hidden.

IsOffline uint32 True if the item is offline.

IsReadOnly uint32 True if the item is read only.

IsReparsePoint uint32 True if the item is a reparse point.

IsSparseFile uint32 True if the item is a sparse file.
148 srTool Reference Guide

License Objects
Property Name Data Type Description

IsSystem uint32 True if the item is a system file.

IsTemporary uint32 True if the item is temporary.

IsVolume uint32 True if the object is a volume. This property is always
set to false.

Modified dateTime The date and time that the item was last modified.

Name string The name of the item, including its extensions, if any.

ServerName string The name of the server on which the item can be
found.

Discovering Items

Use the list or select command to inquire about items:

get fullPath, isContainer of all items of volume "C:" of server

"Foo"

Creating Items

Items cannot be created in srTool.

Changing Items

Items cannot be changed in srTool.

Deleting Items

Items cannot be deleted in srTool.

License Objects
Licenses are objects that represent actual licenses that are installed on a server, and as
such, they come from server objects.
Chapter 5, srTool Object Reference 149

License Objects
Aliases:

Licenses

License Properties

All License properties are constant, and cannot be modified with the set command.

Property Name Data Type Required To
Create

Description

ControllerID uniqueID No The globally unique ID of the server that controls
this object.

ID uniqueID No The globally unique ID of this object.

IsBase uint32 No True if base license

IsBEOption uint32 No True if Backup Exec option

IsClusterOption uint32 No True if cluster option

IsDemo uint32 No True if Demo license

IsExpired uint32 No True if license has expired

IsNBUOption uint32 No True if NetBackup option

IsNFR uint32 No True if not-for-resale license

IsPermanent uint32 No True if permanent license

IsSiteLicense uint32 No True if site license

LicenseEndDate dateTime No The license\licenses expiration date and time

LicenseKeyString string Yes The license key, or the serial number when
creating a license

LicenseProductID int32 No The product ID for this license

LicenseProductName string No The product name for this license

LicenseTimeLeft timeSpan No The amount of time the license has left before it
expires
150 srTool Reference Guide

LogEntry Objects
Property Name Data Type Required To
Create

Description

OwnerID uniqueID No The globally unique ID of the server that owns
this object.

Discovering Licenses

Use the list or select command to view a server’s currently installed licenses:

list all licenses of server "Milan"

Creating Licenses

When a license is purchased, use the serial number you received as follows:

add license to server “Athens” with licenseKeyString =

"12345678910"

Changing Licenses

Once created, licenses cannot be changed using srTool.

Deleting Licenses

Use the delete command to remove licenses from servers:

delete all licenses whose (IsExpired) of all servers

LogEntry Objects
LogEntries are the individual entries in logs that are maintained by the replication system.
LogEntries come from server, job, or pair objects.

Aliases:

LogEntries
Chapter 5, srTool Object Reference 151

LogEntry Objects
LogEntry Properties

All logEntry properties are constant, and cannot be modified using the set command.

Property Name Data Type Description

ControllerID uniqueID The globally unique identifier of the object (server,
job, or pair) that posted the log entry.

GroupCode uint32 The group code of the log entry.

ID uniqueID The globally unique identifier of the log entry.

LogBlob byteArray For internal use only.

MessageText string The complete text of the log entry.

OwnerID uniqueID The globally unique identifier of the object that owns
the log entry.

SequenceNumber uint64 The internal sequence number of the log entry.

StatusCode uint32 The status code of the log entry.

TextID uint32 The unique identifier of the text message for the log
entry.

TimeStamp dateTime The date and time the log entry was posted.

Discovering LogEntries

Use the list or select command to see the LogEntries for a particular Job:

get TimeStamp, MessageText of all logEntries of job "Foo"

To determine the number of log entries for a given server:

count all logEntries of server "Foo"

Creating LogEntries

LogEntries cannot be created in srTool.
152 srTool Reference Guide

ObjectKind Objects
Changing Log Entries

LogEntries cannot be changed in srTool.

Deleting LogEntries

Use the delete command to remove LogEntries. This example deletes all log entries for
the Job “Foo” that are more than three days old:

use job "Foo" of first RMS

delete every LogEntry whose TimeStamp LT (now () - '3 days' as

timespan)

ObjectKind Objects
This object is a root-level meta-object that describes other objects. ObjectKinds may
contain a number of property objects.

Aliases:

ObjectKinds

ObjectKind Properties

All ObjectKind properties are constants, and cannot be modified using the set command.

Property Name Data Type Description

Name string The name of the object kind.

Description string A string that contains a brief description of the object
kind.

OrdinalValue uint32 The internal ordinal value of the object kind.

Discovering ObjectKinds

Use the list or select command to discover ObjectKind objects:

list all objectKinds whose name startsWith “S”
Chapter 5, srTool Object Reference 153

PathRule Objects
Creating ObjectKinds

You cannot create ObjectKind objects using srTool.

Changing ObjectKinds

You cannot change ObjectKind objects using srTool.

Deleting ObjectKinds

You cannot delete ObjectKind objects using srTool.

PathRule Objects
A PathRule is an object that identifies a directory root and its source server that contains
the files and folders to be replicated to the target server. PathRules belong to an owning
job object.

PathRules may contain a number of SelectionRule or DestinationRule objects, or both.

Aliases:

PathRules, Rule, Rules

PathRule Properties

Most PathRule properties are constant or read-only, and cannot be modified using the set
command.

Property Name Data Type Required
to Create

Access Description

ControllerID uniqueID No Constant The globally unique identifier of the
job object that controls this path rule.

ID uniqueID No Constant The globally unique identifier of the
path rule.
154 srTool Reference Guide

PathRule Objects
Property Name Data Type Required
to Create

Access Description

Name string No ReadOnly A string containing the synthesiazed
name of the path rule.

OwnerID uniqueID No Constant The globally unique identifier of the
job object that owns this path rule.

SourceServer string Yes ReadOnly The name of the path rule’s source
server.

SourceServerID uniqueid No ReadOnly The globally unique identifier of the
path rule’s source server.

Path path Yes ReadOnly The absolute, volume-rooted path of
the directory to be replicated with
their path rule.

Discovering PathRules

Use the list or select command to inquire about PathRules in a particular job:

list all rules of job "Foo"

Creating PathRules

Use the add command to create PathRules for a particular job:

use first job of first RMS

add pathRule with sourceServer = "Test1", path = "C:\\Foo"

Note	 In order to create a pathRule, you must specify values for its 'sourceServer' and
'path' properties.

Changing PathRules

Use the set command to change any writeable property on a particular PathRule:

use first job of first RMS

set throttle of every pair to 50

Chapter 5, srTool Object Reference 155

Property Objects
Deleting PathRules

Use the delete command to remove pathRules from a particular job:

del every pathRule whose path endsWith "\\Foo"

Property Objects
A property object describes the properties of srTool objects.

Aliases:

Properties

Property Objects Properties

All Property properties are constant and cannot be modified using the set command.

Property Name Data Type Description

Access uint32 The access of the property (Constant, Read-Only or
Mutable)

AutoStale uint32 True if the property automatically goes stale after a
certain amount of time, or false if not

DataSource uint32 The data source of the property (Synthesized,
FromRMSDB, FromRSA, FromDiscovery or
FromStatsService)

DataType uint32 The intrinsic data type of the property

DefaultValue string The property's default value

Description string The property's description

InitiallyStale uint32 True if the property is initially stale, or false if not

Name string The name of the property

OrdinalValue uint32 The ordinal value the property
156 srTool Reference Guide

ReplicationPair Objects
Property Name Data Type Description

RequiredToCreate uint32 The property's object creation requirements
(CannotBeSpecified, CanBeSpecified or
MustBeSpecified)

Discovering Properties

Use the list or select command to discover properties:

list -omit description of all properties of ObjectKind "RMS"

Creating Properties

Properties cannot be created in srTool.

Changing Properties

Properties cannot be changed in srTool.

Deleting Properties

Properties cannot be deleted in srTool.

ReplicationPair Objects
A ReplicationPair is an object that identifies a source and target server that will participate
in a replication job. Pairs belong to Job objects. Pairs can contain a number of Script
objects.

Aliases:

Pair, Pairs, ReplicationPairs
Chapter 5, srTool Object Reference 157

ReplicationPair Objects
Pair Properties

Most pair properties are constant or read-only, and cannot be modified using the set
command. Many properties of pairs exist only when the pair is actively replicating data.

Property Name Data Type Required
to Create

Access Description

ControllerID uniqueID Constant FromRMSDB

CurrentFileName* string No Constant The name of the current file being
replicated in sync mode.

FromStatsService

CurrentFileSize* uint64 No Constant The size of the current file being
replicated in sync mode.

FromStatsService

DataIsConsistentOnT
arget

uint32 Constant FromStatsService

ID uniqueID No Constant The globally unique identifier of the
pair.

FromRMSDB

IsPairDisabled uint32 No Mutable If TRUE, the pair is disabled and
cannot synchronize.

FromRMSDB

LastKnownRmsPairJo
bInstance

uint32 No ReadOnly For internal use only.

FromRMSDB

Name string No ReadOnly A string containing the synthesized
name of the pair.

NetMaxKbitsPerSeco
nd

uint32 No Mutable Specifies the maximum data
throughput allowed for this pair.

NoRally uint32 No Mutable If TRUE, prevents the pair from
rallying.

NoRallyAutoReset uint32 No Mutable If TRUE, allows the RMS to reset the
"NoRally" property.

OwnerID uniqueID No Constant The globally unique identifier of the
job object that owns this pair.
158 srTool Reference Guide

ReplicationPair Objects
Property Name Data Type Required
to Create

Access Description

ResyncPctComplete* uint32 No Constant A value that indicates the current
percentage completion of
synchronization for the pair.

Resyncs* uint32 No Constant A value that indicates the current
number of resyncs done by the pair.

RunStage* uint32 No Constant A value that indicates the current run
stage of the pair: NotRunning,
PreScan, Synchronization, Dynamic,
ReSynchronization and
NoConnection.

RunState uint32 No ReadOnly A value that indicates the current run
state of the pair: Starting, Running,
Canceling, Canceled, Expiring,
Expired, Aborting, Aborted,
Resuming, Pausing, Paused,
Completed, CompletedWithErrors,
Disconnected, Crashed, Restarting,
Completing, Hung or Force32Bits.

ScannedObjectTally* uint64 No Constant A value that indicates the current
tally of the number of files or folders
that have been replicated during
synchronization mode for the pair.

SourceServer string Yes Constant The name of the pair’s source server.

SourceServerID uniqueID No Constant A value that identifies the source
server of the pair.

TargetMappingPrefix string No Mutable A string that contains the target
mapping prefix to use for the pair.

TargetServer string Yes Constant The name of the pair’s target server.

TargetServerID uniqueID No Constant A value that identifies the target
server of the pair.

Throttle uint32 No Mutable An unsigned integer value between 0
and 100 that indicates the throttling to
use for this pair, specified as a
percentage.
Chapter 5, srTool Object Reference 159

ReplicationPair Objects
Property Name Data Type Required
to Create

Access Description

TimeTilSyncDone* dateTime No Constant A timespan value that estimates how
long it will take to complete
synchronization for the pair.

TotalBytesSent* uint64 No Constant An unsigned integer value that
indicates the current total number of
bytes sent from the source server to
the target server for this replication
pair.

TransferRate* uint32 No Constant A value that indicates the current
data transfer rate between the source
and the target for this replication pair.

WhenStageStarted* dateTime No Constant A dateTime value that indicates when
the current pair stage (see RunStage
property) started for this replication
pair.

* These properties are statistics that are only available when the pair is actively replicating data.

Discovering Pairs

Use the list command to inquire about pairs in a particular job:

get name of all pairs of job "Foo"

Creating Pairs

Use the add command to create pairs for a particular job:

use first job of first rms

add pair with sourceServer = "Test1", targetServer = "Test2"

Note	 In order to create a pair, you must specify values for its SourceServer and
TargetServer properties.

Changing Pairs

Use the set command to change any writeable property on a particular pair:

160 srTool Reference Guide

RMS Objects
set throttle of every pair of every job to 50

Deleting Pairs

Use the delete command to remove pairs from a particular job:

delete all pairs whose name startsWith "Test1:" of first job

RMS Objects
An RMS is a Replication Management Server that is designated to manage replication jobs
on the network. The RMS contains a database that stores information about Jobs, Servers
and Alerts.

RMS objects are root-level objects when srTool uses the high-level client interface.

An RMS can only be created during the VRE 3.1 installation process. srTool cannot be
used to create an RMS object. Similarly, srTool cannot be used to delete an RMS. This can
only be done by removing VRE 3.1 from the RMS machine.

Aliases:

none

RMS Properties

Most properties of RMS objects are either constant or read-only, and thus, cannot be
modified using the set command.

Property Name Data Type Access Description

Address string Constant The RMS's IP address.

BuildVersionString string ReadOnly The build version of the RMS server
software running on the RMS.

Domain string ReadOnly The name of the domain the RMS
belongs to.

FeaturePackVersion uint32 ReadOnly The version number of the server's
feature pack.

ID uniqueID Constant The RMS's globally unique identifier.
Chapter 5, srTool Object Reference 161

RMS Objects
Property Name Data Type Access Description

IsAvailable uint32 ReadOnly True if the RMS is available (that is,
accessible to the network).

MaintenancePackVersi
on

uint32 ReadOnly The maintenance pack version number
of the software running on this RMS.

MajorBuildNumber uint32 ReadOnly The major build number of the software
running on this RMS.

MajorProductVersion uint32 ReadOnly The major product version number of
the software running on this RMS.

MinorBuildNumber uint32 ReadOnly The minor build number of the software
running on this RMS.

MinorProductVersion uint32 ReadOnly The minor product version number of
the software running on this RMS.

Modified dateTime ReadOnly The date and time when the RMS
property data was last modified.

Name string Constant The name of the RMS.

OSBuildNumber uint32 ReadOnly The build number of the operating
system software running on the RMS.

OSClass uint32 ReadOnly The class code of the operating system
software running on the RMS.

OSMajorVersion uint32 ReadOnly The major version number of the
operating system software running on
the RMS.

OSMinorVersion uint32 ReadOnly The minor version number of the
operating system software running on
the RMS.

OSRevisionNumber uint32 ReadOnly The revision number of the operating
system software running on the RMS.

OSServicePackMajor uint32 ReadOnly The service pack number of the
operating system software running on
the RMS.

OSServicePackMinor uint32 ReadOnly The service pack number of the
operating system software running on
the RMS.
162 srTool Reference Guide

RMS Objects
Property Name Data Type Access Description

OSWindowsSubType uint32 ReadOnly The windows sub-type code of the
operating system software running on
the RMS.

PatchVersion uint32 ReadOnly The patch version number of the
software running on the RMS.

SpecialBuildString string ReadOnly The special build string of the software
running on the RMS.

RMSGatewayAddress string ReadOnly The name or IP address of the RMS
gateway for use in remote "push"
deployment.

TimeToKeepLogItems timeSpan Mutable The maximum amount of time to retain
log entries on the RMS before
automatically purging them.

Discovering RMSs

Normally, replication environments will have a single RMS. Use the list command to
find out about it:

list first rms

Creating RMSs

RMS objects cannot be created using srTool.

Changing RMSs

Use the set command to change the value of any mutable properties of the RMS:

set TimeToKeepLogItems of first RMS to "1 week" as timeSpan

Deleting RMSs

RMS objects cannot be deleted using srTool.
Chapter 5, srTool Object Reference 163

Script Objects
Script Objects
Script objects designate special programs to run when a certain event occurs on either the
Source or Target, such as synchronization having been achieved. Scripts belong to pairs.

Aliases:

Scripts

Script Properties

Many script properties are mutable, and can be modified using the set command.

Property Name Data Type Required
to Create

Access Description

CommandLine string Yes Mutable A string that contains the command
line that is to execute when the
triggering event occurs. This property
must contain a string that contains at
least one character and at most 4,096
characters. Its content should be a
well-formed command line that
begins with a path specification that
leads to the .exe program file to be
executed, followed by any number of
command line parameters required
by that program to properly execute.

ControllerID uniqueID No Constant The globally unique identifier of the
job that controls this object.

ID uniqueID No Constant The globally unique identifier of the
script.

IsRunAsynch uint32 No Mutable True if the CommandLine is to
execute asynchonously (that is,
concurrently); false, if not. The
default value is false.

IsSource uint32 Yes Mutable True if the CommandLine is to
execute on the source server; false if
on the target.
164 srTool Reference Guide

Script Objects
Property Name Data Type Required
to Create

Access Description

Name string No ReadOnly A string containing the synthesized
name of the script.

OwnerID uniqueID No Constant The globally unique identifier of the
pair object that owns this script.

Timeout timeSpan No Mutable Specifies the amount of time to wait
for the command to finish before
proceeding. The default value is zero
time.

TriggeringEvent uniqueID Yes Mutable The globally unique identifier of the
triggering event, some of which are
predefined as global variables:
JobStart, JobStop,
PairDataConsistent,
PairDataInconsistent. See “Variables”
on page 41.

Discovering Scripts

Use the list or select command to inquire about scripts in a particular
ReplicationPair:

get name of all scripts of every pair of job "Foo"

Creating Scripts

Use the add command to create scripts for a particular ReplicationPair:

use first pair of first job of first rms

add script with triggeringEvent = PairDataConsistent,

commandLine = "startBackup", isSource = false, timeout = "1

hour" as timespan, isRunAsynch = false

Note	 In order to create a script, you must specify values for the IsSource and
CommandLine properties.
Chapter 5, srTool Object Reference 165

SelectionRule Objects
Changing Scripts

Use the set command to change any writeable property on a particular script :

use first pair of first job of first rms

set commandLine of every script to "startbackup.bat"

Deleting Scripts

Use the delete command to remove scripts from a particular ReplicationPair:

delete every script of all pairs of job "Foo"

SelectionRule Objects
SelectionRule objects determine the kinds of files that will be replicated for a particular
PathRule. SelectionRules belong to PathRules.

Aliases:

SelectionRules, SelRule, SelRules

SelectionRule Properties

Most selectionRule properties are constant or read-only, and cannot be modified using the
set command.

Property
Name

Data Type Required To
Create

Access Description

ControllerID uniqueID No Constant The globally unique identifier of the job the
selection rule is controlled by.

ID uniqueID No Constant The globally unique identifier of the selection
rule.

IsExclude uint32 No Mutable True if the selection rule excludes matching
files or folders from replication; false if it
includes them.
166 srTool Reference Guide

SelectionRule Objects
Property
Name

Data Type Required To
Create

Access Description

IsRecursive uint32 No Mutable True if the selection rule applies to its path
rule's subdirectories; false if it applies only to
the items inside its path rule's directory.

Name string No ReadOnly The name of the selection rule.

NameSpec string Yes Mutable The name specification, perhaps a wild card,
that determines the files or folders that will be
selected.

OwnerID uniqueID No Constant The globally unique identifier of the path rule
that owns the selection rule.

SortOrder uint32 No ReadOnly For internal use only.

Discovering SelectionRules

Use the list or select command to inquire about SelectionRules in a particular job:

get name of all SelRules of all rules of job "Foo"

Creating SelectionRules

Use the add command to create SelectionRules:

use first job of first rms

add SelRule with nameSpec = "*.DOC" to first PathRule

Note	 In order to create a selection rule, you must specify a value for the ’nameSpec’
property.

Changing SelectionRules

Use the set command to change any mutable property on a particular SelectionRule :

use first job of first rms

set nameSpec = "*.log" for all SelRules whose nameSpec EQ

"*.exe" of all rules

Chapter 5, srTool Object Reference 167

Server Objects
Deleting SelectionRules

Use the delete command to remove selectionRules from a particular PathRule:

delete every selRule whose nameSpec EQ "*.DOC" of all pathRules

of job "Foo"

Server Objects
A server is a machine that can participate in replication as either a source or a target.
Servers are tracked by the RMS database. Server objects contain logEntry and volume
objects. Servers can only be obtained from an RMS.

Note	 A server can only be created during the VRE 3.1 installation or deployment process.
srTool cannot be used to create one. A server can only be deleted by first removing
the machine from the network or removing VRE 3.1 from it, then using the delete
command in srTool (running on a different machine) to force the replication system
to "forget" about that server.

Aliases:

Servers
168 srTool Reference Guide

Server Objects
Server Properties

Most server properties are constant or read-only, and cannot be modified using the set
command.

Property Name Data Type Access Description

Address string Constant The server's IP address.

BuildVersionString string ReadOnly The build version of the RSA server
software running on the server.

DefaultTargetPath string Mutable The default target path for replica files
copied to the server

Domain string ReadOnly The name of the domain the server
belongs to.

FeaturePackVersion uint32 ReadOnly The version number of the server's feature
pack.

ID uniqueID Constant The server's globally unique identifier.

IsAvailable uint32 ReadOnly True if the server is available (that is
accessible on the network)

IsOnline uint32 ReadOnly True if the server is online (that is, able to
participate in replication)

IsStale uint32 Mutable For internal use only.

LastAlertDateTime dateTime ReadOnly The date and time of the last alert posted
from this server.

LastAlertSequenceN
umber

uint64 ReadOnly The sequence number of the last alert
posted from this server.

MaintenancePackVer
sion

uint32 ReadOnly The maintenance pack version number of
the software running on this server.

MajorBuildNumber uint32 ReadOnly The major build number of the software
running on this server.

MajorProductVersion uint32 ReadOnly The major product version number of the
software running on this server.

MinorBuildNumber uint32 ReadOnly The minor build number of the software
running on this server.
Chapter 5, srTool Object Reference 169

Server Objects
Property Name Data Type Access Description

MinorProductVersion uint32 ReadOnly The minor product version number of the
software running on this server.

Modified dateTime ReadOnly The date and time when the server
property data was last modified.

Name string Constant The name of the server.

OSBuildNumber uint32 ReadOnly The build number of the operating system
software running on the server.

OSClass uint32 ReadOnly The class code of the operating system
software running on the server.

OSMajorVersion uint32 ReadOnly The major version number of the
operating system software running on the
server.

OSMinorVersion uint32 ReadOnly The minor version number of the
operating system software running on the
server.

OSRevisionNumber uint32 ReadOnly The revision number of the operating
system software running on the server.

OSServicePackMajor uint32 ReadOnly The service pack number of the operating
system software running on the server.

OSServicePackMinor uint32 ReadOnly The service pack number of the operating
system software running on the server.

OSVersion string ReadOnly The version string for the operating
system software running on the server.

OSWindowsSubType uint32 ReadOnly The windows sub-type code of the
operating system software running on the
server.

PatchVersion uint32 ReadOnly The patch version number of the software
running on the server.

SpecialBuildString string ReadOnly The special build string of the software
running on the server.

TimeToKeepAlerts timeSpan Mutable The maximum age of alerts before they
get deleted automatically.
170 srTool Reference Guide

SourceServer Objects
Property Name Data Type Access Description

TimeToKeepLogItem
s

timeSpan Mutable The maximum amount of time to retain
log entries on the RMS before
automatically purging them.

Discovering Servers

Use the list or select command to find out about the servers that exist in your RMS'
replication neighborhood:

get name, address, isAvailable of all servers

Creating Servers

Servers cannot be created using srTool.

Changing Servers

Use the set command to change the value of any mutable property of a server:

set TimeToKeepAlerts of all servers to "2 weeks" as timeSpan

Deleting Servers

To delete a server, uninstall VRE 3.1 from it, then use the delete command:

delete server "Milan"

SourceServer Objects
SourceServer objects represent servers that contain the files that are to be replicated for a
job. SourceServers are no different than Server objects, except they are obtained from Job
objects.

Aliases:

SourceServers
Chapter 5, srTool Object Reference 171

SourceServer Objects
SourceServer Properties

Most SourceServer properties are constant or read-only, and cannot be modified using the
set command.

Property Name Data Type Access Description

Address string Constant The server's IP address.

BuildVersionString string ReadOnly The build version of the RSA server
software running on the server.

DefaultTargetPath string Mutable The default target path for replica files
copied to the server

Domain string ReadOnly The name of the domain the server
belongs to.

FeaturePackVersion uint32 ReadOnly The version number of the server's
feature pack.

ID uniqueID Constant The server's globally unique identifier.

IsAvailable uint32 ReadOnly True if the server is available (that is
accessible on the network)

IsOnline uint32 ReadOnly True if the server is online (that is, able
to participate in replication)

IsStale uint32 Mutable For internal use only.

LastAlertDateTime dateTime ReadOnly The date and time of the last alert
posted from this server.

LastAlertSequence
Number

uint64 ReadOnly The sequence number of the last alert
posted from this server.

MaintenancePack
Version

uint32 ReadOnly The maintenance pack version number
of the software running on this server.

MajorBuildNumber uint32 ReadOnly The major build number of the
software running on this server.

MajorProductVersion uint32 ReadOnly The major product version number of
the software running on this server.

MinorBuildNumber uint32 ReadOnly The minor build number of the
software running on this server.
172 srTool Reference Guide

SourceServer Objects
Property Name Data Type Access Description

MinorProductVersion uint32 ReadOnly The minor product version number of
the software running on this server.

Modified dateTime ReadOnly The date and time when the server
property data was last modified.

Name string Constant The name of the server.

OSBuildNumber uint32 ReadOnly The build number of the operating
system software running on the server.

OSClass uint32 ReadOnly The class code of the operating system
software running on the server.

OSMajorVersion uint32 ReadOnly The major version number of the
operating system software running on
the server.

OSMinorVersion uint32 ReadOnly The minor version number of the
operating system software running on
the server.

OSRevisionNumber uint32 ReadOnly The revision number of the operating
system software running on the server.

OSServicePackMajor uint32 ReadOnly The service pack number of the
operating system software running on
the server.

OSServicePackMinor uint32 ReadOnly The service pack number of the
operating system software running on
the server.

OSVersion string ReadOnly The version string for the operating
system software running on the server.

OSWindowsSubType uint32 ReadOnly The windows sub-type code of the
operating system software running on
the server.

PatchVersion uint32 ReadOnly The patch version number of the
software running on the server.

SpecialBuildString string ReadOnly The special build string of the software
running on the server.
Chapter 5, srTool Object Reference 173

SubFile Objects
Property Name Data Type Access Description

TimeToKeepAlerts timeSpan Mutable The maximum age of alerts before they
get deleted automatically.

TimeToKeepLogItems timeSpan Mutable The maximum amount of time to retain
log entries on the RMS before
automatically purging them.

Discovering SourceServers

Use the list or select command to inquire about SourceServers in a particular job:

get name of all sourceServers of job "Foo"

Creating SourceServers

SourceServers can only be created by adding Replication Pairs to a Job.

Changing SourceServers

Since SourceServers are functionally identical to Servers, they can be changed using the
set command. See the “Changing Servers” section for examples.

Deleting SourceServers

Since SourceServers are functionally identical to Servers, they can be deleted using the
delete command. See the “Deleting Servers” section for examples.

SubFile Objects
SubFile objects represent files on a server. Subfiles are no different than Files, except that
they are used to produce an entire heirarchy of files that have a common ancestor
container, as opposed to just the files in a single container. SubFile objects are obtained
from folder or volume objects.

Aliases:

SubFiles
174 srTool Reference Guide

SubFile Objects
SubFile Properties

All subFile properties are constant, and cannot be modified using the set command..

Property Name Data Type Description

Accessed dateTime The date and time that the file was last accessed.

Created dateTime The date and time that the file was created.

Depth uint32 The depth (valence) of the file in the hierarchy.

FullPath string The full path to the file.

IsArchive uint32 True if archive bit is set.

IsCompressed uint32 True if the file is compressed.

IsContainer uint32 True if the file is a container (folder). This
property is always false.

IsEncrypted uint32 True if the file is encrypted.

IsHidden uint32 True if the file is hidden.

IsOffline uint32 True if the file is offline.

IsReadOnly uint32 True if the file is read-only.

IsReparsePoint uint32 True if the file is a reparse point.

IsSparseFile uint32 True if the file is sparse.

IsSystem uint32 True if the file is a system file.

IsTemporary uint32 True if the file is temporary.

Modified dateTime The date and time that the file was last modified.

Name string The name of the file, including its name
extensions, if any.

ServerName string The name of the server on which the file can be
found.

Size uint64 The size of the file in bytes.
Chapter 5, srTool Object Reference 175

SubFolder Objects
Discovering SubFiles

Use the list or select command to inquire about SubFiles in a particular directory:

get fullPath of all subFiles of folder "Windows" of vol "C:" of

server "Foo"

Creating SubFiles

srTool cannot create SubFiles.

Changing SubFiles

srTool cannot change SubFiles.

Deleting SubFiles

srTool cannot delete SubFiles.

SubFolder Objects
SubFolders represent directories on a server. Subfolders are no different than folders,
except that they are used to produce an entire heirarchy of folders that have a common
ancestor container, as opposed to just the folders in a single container. SubFolders can be
obtained from folder or volume objects.

Aliases:

SubFolders
176 srTool Reference Guide

SubFolder Objects
SubFolder Properties

All subFolder properties are constant or read-only, and cannot be modified using the set
command.

Property Name Data Type Description

Accessed dateTime The date and time that the folder was last accessed.

Created dateTime The date and time that the folder was created.

Depth uint32 The depth (valence) of the folder in the hierarchy.

FullPath string The full path to the folder.

HasContainers uint32 True if the folder contains any folders.

HasFiles uint32 True if the folder contains any files.

IsArchive uint32 True if the archive bit is set.

IsCompressed uint32 True if the folder is compressed.

IsContainer uint32 True if the folder is a container (folder). This property is
always true.

IsEncrypted uint32 True if the folder is encrypted.

IsHidden uint32 True if the folder is hidden.

IsOffline uint32 True if the folder is offline.

IsSystem uint32 True if the folder is a system folder.

IsVolume uint32 True if the folder is a volume. This property is always
false.

Modified dateTime The date and time that the folder was last modified.

Name string The name of the folder, including its name extension, if
any.

ServerName string The name of the server on which the folder can be
found.
Chapter 5, srTool Object Reference 177

SubItem Objects
Discovering SubFolders

Use the list or select command to inquire about all SubFolders in a given directory:

get fullPath of all subFolders of vol "C:" of server "Foo"

Creating SubFolders

srTool cannot create SubFolders.

Changing SubFolders

srTool cannot change SubFolders.

Deleting SubFolders

srTool cannot delete SubFolders.

SubItem Objects
SubItems represent folders or files on a server. Subitems are no different than Items,
except that they are used to produce an entire heirarchy of folders or files that have a
common ancestor container, as opposed to just those folders or files in a single container.
SubItems come from folder or volume objects.

Aliases:

SubItems

SubItem Properties

All subItem properties are constant or read-only, and cannot be modified using the set
command.

Property Name Data Type Description

Accessed dateTime The date and time that the item was last accessed.

Created dateTime The date and time that the item was created.
178 srTool Reference Guide

SubItem Objects
Property Name Data Type Description

Depth uint32 The depth (valence) of the item in the hierarchy.

FullPath string The full path to the item.

HasContainers uint32 True if the item contains any folders (if it’s a
container).

HasFiles uint32 True if the item contains any files (if it’s a container).

IsArchive uint32 True if the archive bit is set.

IsCompressed uint32 True if the item is compressed.

IsContainer uint32 True if the item is a container (folder); false if it is a
file.

IsEncrypted uint32 True if the item is encrypted.

IsHidden uint32 True if the item is hidden.

IsOffline uint32 True if the item is offline.

IsReadOnly uint32 True if the item is read-only.

IsReparsePoint uint32 True if the item is a reparse point.

IsSparseFile uint32 True if the item is a sparse file.

IsSystem uint32 True if the item is a system file.

IsTemporary uint32 True if the item is temporary.

IsVolume uint32 True if the object is a volume. This property is always
set to false.

Modified dateTime The date and time that the item was last modified.

Name string The name of the item, including its name extensions,
if any.

ServerName string The name of the server on which the item can be
found.
Chapter 5, srTool Object Reference 179

TargetServer Objects
Discovering SubItems

Use the list or select command to inquire about subItems in a given directory:

get fullPath, isContainer of all subItems of folder "Windows"
of vol "C:" of server "Foo"

Creating SubItems

srTool cannot create SubItems.

Changing SubItems

srTool cannot change SubItems.

Deleting SubItems

srTool cannot delete SubItems.

TargetServer Objects
TargetServer objects represent servers that will receive replica files for a job. TargetServers
are no different than Server objects, except they are obtained from Job objects.

Aliases:

TargetServers

TargetServer Properties

Most TargetServer properties are constant or read-only, and cannot be modified using the
set command.

Property Name Data Type Access Description

Address string Constant The server's IP address.

BuildVersionString string ReadOnly The build version of the RSA server
software running on the server.
180 srTool Reference Guide

TargetServer Objects
Property Name Data Type Access Description

DefaultTargetPath string Mutable The default target path for replica files
copied to the server

Domain string ReadOnly The name of the domain the server
belongs to.

FeaturePackVersion uint32 ReadOnly The version number of the server's
feature pack.

ID uniqueID Constant The server's globally unique identifier.

IsAvailable uint32 ReadOnly True if the server is available (that is
accessible on the network)

IsOnline uint32 ReadOnly True if the server is online (that is, able
to participate in replication)

IsStale uint32 Mutable For internal use only.

LastAlertDateTime dateTime ReadOnly The date and time of the last alert
posted from this server.

LastAlertSequence
Number

uint64 ReadOnly The sequence number of the last alert
posted from this server.

MaintenancePack
Version

uint32 ReadOnly The maintenance pack version number
of the software running on this server.

MajorBuildNumber uint32 ReadOnly The major build number of the software
running on this server.

MajorProductVersion uint32 ReadOnly The major product version number of
the software running on this server.

MinorBuildNumber uint32 ReadOnly The minor build number of the
software running on this server.

MinorProductVersion uint32 ReadOnly The minor product version number of
the software running on this server.

Modified dateTime ReadOnly The date and time when the server
property data was last modified.

Name string Constant The name of the server.

OSBuildNumber uint32 ReadOnly The build number of the operating
system software running on the server.
Chapter 5, srTool Object Reference 181

TargetServer Objects
Property Name Data Type Access Description

OSClass uint32 ReadOnly The class code of the operating system
software running on the server.

OSMajorVersion uint32 ReadOnly The major version number of the
operating system software running on
the server.

OSMinorVersion uint32 ReadOnly The minor version number of the
operating system software running on
the server.

OSRevisionNumber uint32 ReadOnly The revision number of the operating
system software running on the server.

OSServicePackMajor uint32 ReadOnly The service pack number of the
operating system software running on
the server.

OSServicePackMinor uint32 ReadOnly The service pack number of the
operating system software running on
the server.

OSVersion string ReadOnly The version string for the operating
system software running on the server.

OSWindowsSubType uint32 ReadOnly The windows sub-type code of the
operating system software running on
the server.

PatchVersion uint32 ReadOnly The patch version number of the
software running on the server.

SpecialBuildString string ReadOnly The special build string of the software
running on the server.

TimeToKeepAlerts timeSpan Mutable The maximum age of alerts before they
get deleted automatically.

TimeToKeepLogItems timeSpan Mutable The maximum amount of time to retain
log entries on the RMS before
automatically purging them.

Discovering TargetServers

Use the list or select command to inquire about TargetServers in a particular job:

182 srTool Reference Guide

Volume Objects
get name of all targetServers of job "Foo"

Creating TargetServers

TargetServers can only be created by adding Replication Pairs to a Job.

Changing TargetServers

Since TargetServers are functionally identical to Servers, they can be changed using the
set command. See the “Changing Servers” section for examples.

Deleting TargetServers

Since TargetServers are functionally identical to Servers, they can be deleted using the
delete command. See the “Deleting Servers” section for examples.

Volume Objects
A Volume object represents a logical storage volume on a server, and thus, comes from a
server object. Volume objects can be used to obtain File, Folder, Item, SubFile, SubFolder,
or SubItem objects.

Aliases:

Volumes, Vol, Vols

Volume Properties

All volume properties are constant or read-only, and cannot be modified using the set
command.

Property Name Data Type Description

Accessed TimeStamp The date and time when the volume was last accessed.

BytesFree uint64 The number of free bytes on the volume.

Capacity uint64 The capacity of the volume, in bytes.
Chapter 5, srTool Object Reference 183

Volume Objects
Property Name Data Type Description

Created TimeStamp The date and time of the volume's creation.

Depth count Always zero (0).

FileSystem string The file system format of the volume (for example,
"NTFS").

FullPath string A string containing the full path name of the volume.

HasContainers uint32 True if the root level of the volume contains any folders.

HasFiles uint32 True if the root level of the volume contains any files.

IsContainer uint32 True if the volume is a container. This property is always
true.

IsReadOnly uint32 True if the volume is write-protected.

IsVolume uint32 True if the volume is a volume. This property is always set
true.

Modified TimeStamp The date and time when the volume was last changed.

Name string A string containing the name of the volume.

ServerName string The name of the server that owns this volume.

Discovering Volumes

Use the list or select commands to inquire about volumes on a particular server:

get name of every volume of every server

Creating Volumes

srTool cannot create Volumes.

Changing Volumes

srTool cannot change Volumes.
184 srTool Reference Guide

Volume Objects
Deleting Volumes

srTool cannot delete Volumes.
Chapter 5, srTool Object Reference 185

Volume Objects
186 srTool Reference Guide

Messages and Troubleshooting
A

srTool can issue many different messages to many different venues. One is the srTool
console window, particularly if the global variable "verbose" is set true. Another is the
“Trace...” log file(s), which are kept in the Logs folder in the VRE 3.1 home directory.

Regardless of where they end up, all messages that originate in the client interfaces, the
"shared classes" library or in srTool, have an identification name, which is provided in the
following form.

MMM000I

The message configuration is as follows.

Message ID Part Description

Digits 1 to 3:

“HLS”:

“SHR”:

“SRT”:

The three-letter module code that identifies the origin of the message.

◆ The message originated inside the high-level client interface.

◆ The message originated inside the shared classes library

◆ The message originated inside of srTool

Digits 4 to 6: A unique three-digit unsigned decimal identification number that
identifies the message.

Digit 7:

“A” (Action):

“I” (Inform):

“E” (Error):

“S” (Severe):

A code letter that describes the message type.

◆ The program is waiting for the user to take an action

◆ The message contains information that may or may not be of
interest to the user.

◆ The message contains information about a problem the software
encountered that caused the operation to fail.

◆ The message contains information about a serious problem the
software encountered that required the software to terminate its
operation.

For example, the message SRT301A is a message that originated in srTool, its message ID
is 301, and it is an action message. The following message listings are generated by srTool:
“Shared Classes Library Messages” on page 188, “High-Level Client Interface Messages”
on page 206, and “srTool Messages” on page 243.
187

Shared Classes Library Messages
Shared Classes Library Messages

Message Code Message and Description

SHR200E SHR200E CElementProcessor failed while processing entity 'entityDescription'

PROBLEM:

A failure occurred while processing an expression, preventing all of its elements from
being processed. Entity is either "operator", "operand" or "invalid element".

CAUSE:

If entity is operator, the failure occurred while processing an operator in the
expression. If entity is operand, the failure occurred while processing an operand in
the expression. The entityDescription identifies the operator or operand whose
processing failed. If entity reads "invalid element", a serious internal problem exists
that should be reported to VERITAS technical support.

SOLUTION:

This message is normally accompanied by another message indicating the cause of
the failure, whether the fault of an operator or an operand. Note the entityDescription
and determine from the other messages what aspect of the operator or operand failed.
(In srTool, be sure the verbose shell variable is true so that all available diagnostic
messages are visible.)

SHR201E SHR201E (ProcessOperator) Binary operation failure, operator=operator, operands:
leftOperand, rightOperand

PROBLEM:

A failure occurred while processing two operands, leftOperand and rightOperand using
the binary operator operator, preventing the posting of its result on the expression
evaluator's result stack.

CAUSE:

There are many possible causes for operators to fail (for example, division by zero,
type incompatibility, and so on). This message identifies the operator and the two
operands associated with the failure.

SOLUTION:

This message is normally accompanied by another message indicating the underlying
cause of the failure. (In srTool, be sure the verbose shell variable is true so that all
available diagnostic messages are visible.)
188 srTool Reference Guide

Shared Classes Library Messages
Message Code Message and Description

SHR202E SHR202E (ProcessOperator) Unary operation failure, operator=operator, operand:
operand

PROBLEM:

A failure occurred while processing the given single operand using the given unary
operator, preventing the posting of its result on the expression evaluator's result stack.

CAUSE:

There are many possible causes for operators to fail (for example, type
incompatibility, and so on). This message identifies the operator and the operand
associated with the failure.

SOLUTION:

This message is normally accompanied by another message indicating the underlying
cause of the failure. (In srTool, be sure the verbose shell variable is true so that all
available diagnostic messages are visible.)

SHR203E SHR203E (ProcessOperator) Evaluation result stack was empty, expected second
operand -- operator='operator' (operand='operand')

PROBLEM:

During processing of an expression, the expression evaluator's result stack became
empty while the binary operator operator remained to be processed. The first operand
is operand. This indicates an internal software problem.

CAUSE:

This error should not be possible to produce during normal use of the VRE 3.1 console or
srTool.

SOLUTION:

(In srTool, be sure the verbose shell variable is true so that all available diagnostic
messages are visible.) Gather as much information about how this message came
about, and contact VERITAS technical support.

SHR204E SHR204E (ProcessOperator) Operator invalid, neither unary or binary

PROBLEM:

During processing of an expression, an invalid operator was found that answered
false to both IsUnaryOperator and IsBinaryOperator queries. This indicates an
internal software problem.

CAUSE:

This error should not be possible to produce during normal use of the VRE 3.1
console or srTool.

SOLUTION:

(In srTool, be sure the verbose shell variable is true so that all available diagnostic
messages are visible.) Gather as much information about how this message came
about, then contact VERITAS technical support.
Appendix A, Messages and Troubleshooting 189

Shared Classes Library Messages
Message Code Message and Description

SHR205E SHR205E (ProcessOperator) Evaluation result stack was empty, expected first operand

PROBLEM:

During processing of an expression, the expression evaluator's result stack was found
to be empty when an operator was next in line to be processed. This indicates an
internal software problem.

CAUSE:

This error should not be possible to produce during normal use of the VRE 3.1
console or srTool.

SOLUTION:

(In srTool, be sure the verbose shell variable is true so that all available diagnostic
messages are visible.) Gather as much information about how this message came
about, then contact VERITAS technical support.

SHR207E SHR207E (ProcessOperand) Unable to get value of basic property reference
'propertyRefDescription'

PROBLEM:

A failure occurred while processing the basic property reference identified in the
message.

CAUSE:

There are many possible causes for basic property references to fail to answer with a
data value. The most common cause is specifying a property that doesn't belong to
the kind of object being queried for.

SOLUTION:

Check to be sure that the property being requested in the query filter expression is a
valid property of the kinds of objects being queried for.

SHR208E SHR208E (ProcessOperand) Unable to get value of property reference
'propertyRefDescription'

PROBLEM:

A failure occurred while processing the (absolute) property reference identified in the
message. No data value was able to be returned for that property from the given
object.

CAUSE:

There are two common causes for property references to fail to answer with a data
value. The most common cause is specifying a an object that does not exist, or
specifying a property that doesn't belong to the kind of object that was specified.

SOLUTION:

Check to be sure that the object specified in the reference actually exists. Verify that
the property being requested is a valid property of the object that was specified.
190 srTool Reference Guide

Shared Classes Library Messages
Message Code Message and Description

SHR209E SHR209E (ProcessOperand) Invalid operand 'operandDescription' -- internal error

PROBLEM:

During processing of an expression, an invalid operand identified by the
operandDescription was encountered that was not a constant, variable reference,
basic property reference, (absolute) property reference or a function call. This
indicates an internal software problem.

CAUSE:

This error should not be possible to produce during normal use of the VRE 3.1
console or srTool.

SOLUTION:

(In srTool, be sure the verbose shell variable is true so that all available diagnostic
messages are visible.) Gather as much information about how this message came
about, then contact VERITAS technical support.

SHR210E SHR210E (CEvaluator::End) Result stack is empty -- expected final result

PROBLEM:

After fully processing an expression, the expression evaluator's result stack was
found to be empty. This indicates an internal software problem.

CAUSE:

This error should not be possible to produce during normal use of the VRE 3.1
console or srTool.

SOLUTION:

(In srTool, be sure the verbose shell variable is true so that all available diagnostic
messages are visible.) Gather as much information about how this message came
about, then contact VERITAS technical support.

SHR211E SHR211E (CEvaluator::End) Result stack is wrong size -- should have 1 element,
instead found elementCount

PROBLEM:

After fully processing an expression, the expression evaluator's result stack was
found to contain elementCount elements, a value that exceeds 1, the expected number.
Somehow, too many result values were pushed onto the result stack. This indicates an
internal software problem.

CAUSE:

This error should not be possible to produce during normal use of the VRE 3.1
console or srTool.

SOLUTION:

(In srTool, be sure the verbose shell variable is true so that all available diagnostic
messages are visible.) Gather as much information about how this message came
about, then contact VERITAS technical support.
Appendix A, Messages and Troubleshooting 191

Shared Classes Library Messages
SHR212E SHR212E (ANYTYPE) GetValue: Unable to convert 'existingType' value 'dataValue' to
type 'targetType'

PROBLEM:

The data value dataValue, whose data type is existingType, was requested in a different
data type targetType. A failure occurred while trying to convert the data value to the
target data type.

CAUSE:

This error usually occurs when trying to convert a data value into another data type
that is not compatible with the original value's data type.

SOLUTION:

To avoid this error, check to be sure that the data value's existing data type is able to
be converted into the desired target data type. (See “Converting Between Different
Data Types” on page 33.)

SHR213I SHR213I signalDescription (codeName) signaled

CAUSE:

This message reports that the signal signalDescription whose code name is codeName
was received and acknowledged. The software may or may not respond to the signal,
depending upon the type of signal and the state of the software at the time it was
raised.

Signal Description Code Name Meaning

^C SIGINT "Control-C" interrupt. The user held down
the Control key and pressed the 'C' key. In
srTool, this is used to interrupt the current
operation that is in progress.

Illegal Instruction SIGILL An illegal instruction was encountered
during program execution.

Floating Point
Exception

SIGFPE A floating point exception was thrown
during program execution.

Segment Violation SIGSEGV A segment violation occurred during
program execution.

Terminate SIGTERM The program was asked to terminate.

Break SIGBREAK (Windows only) The Windows NT
command prompt window was asked to
close while srTool was running inside it.
This signal causes srTool to quit at its
earliest convenience.

Message Code Message and Description
192 srTool Reference Guide

Shared Classes Library Messages
Message Code Message and Description

Abort SIGABRT Execution of the program is aborting.

Unknown signal signal code number A signal of unknown class was
encountered during program execution.

SHR221W SHR221W (Class::Method) Invalid index or index range 'indexOrIndexRange'

PROBLEM:

While filtering an ordered sequence of objects by indexing specification, an invalid
index or an invalid index range was encountered.

CAUSE:

This error can occur when an indexing specification is used in an srTool command,
and the indexing spec refers to objects that aren't in the given index position.

SOLUTION:

To avoid this error, check to be sure that the indexing specification that is used refers
to objects that really do occupy those index positions. (See “Indexing Specifications”
on page 70.)

SHR222E SHR222E (ANYTYPE) Expected expectedLength characters in GUID string -- instead
found actualLength characters

PROBLEM:

While converting a data value of type string into a data value of type uniqueid, the
string was found to have actualLength characters in it, whereas expectedLength
characters were expected.

CAUSE:

This error is most commonly found in srTool when a string is being converted into a
uniqueID. For example, this srTool command will fail with this error:
echo -x "{A32Fba1E-D2D7-4583-850A-1FA58CbB9eB}" as
uniqueID
This srTool example will display the proper string length expected:
echo -x "The proper length of a string containing a
uniqueID is " + sizeOf (newID () as string) as string

SOLUTION:

To avoid this error, be sure the contents of the string follows the syntax rules for
specifying a uniqueID. (See “Converting a String into a UniqueID” on page 34.)
Appendix A, Messages and Troubleshooting 193

Shared Classes Library Messages
Message Code Message and Description

SHR223E SHR223E (ANYTYPE) Expected hexadecimal digit at position charPos -- instead found
'character'

PROBLEM:

While converting a data value of type string into a data value of type uniqueid, the
string was found to have a non-hexadecimal digit character charPos characters into the
it. (A hex digit is 0 thru 9, 'a' thru 'f', or 'A' thru 'F'.)

CAUSE:

This error is most commonly found in srTool when a string is being converted into a
uniqueID. For example, this srTool command will fail with this error:
echo -x "{A32Fba1*-D2D7-4583-850A-1FA58CbB9eB0}" as
uniqueID

SOLUTION:

To avoid this error, be sure the contents of the string follows the syntax rules for
specifying a uniqueID. (See “Converting a String into a UniqueID” on page 34.)

SHR224E SHR224E (ANYTYPE) Expected 'goodChar' character at position charPos -- instead found
'badChar'

PROBLEM:

While converting a data value of type string into a data value of type uniqueid, the
string didn't have a '{', '-' or '}' character in the correct positions. Instead the character
badChar was found charPos characters into the string, whereas the character goodChar
was expected there.

CAUSE:

This error is most commonly found in srTool when a string is being converted into a
uniqueID. For example, this srTool command will fail with this error:
echo -x "{A32Fba1E^D2D7-4583-850A-1FA58CbB9eB0}" as
uniqueID

SOLUTION:

To avoid this error, be sure the contents of the string follows the syntax rules for
specifying a uniqueID. (See “Converting a String into a UniqueID” on page 34.)

SHR225I SHR225I (CExpression::Evaluate) Expression 'expressionDescription' failed to evaluate

CAUSE:

This error is reported for any expression evaluation failure and merely states that a
failure occurred. This message is normally accompanied by other messages that help
to indicate the cause of the failure.
194 srTool Reference Guide

Shared Classes Library Messages
Message Code Message and Description

SHR226E SHR226E (ProcessOperand) Function call 'functionCallDescription' failed

PROBLEM:

A failure was reported while processing the function call operand identified by
functionCallDescription during evaluation of an expression.

CAUSE:

This error is most commonly found in srTool when an expression contains a call to a
function that doesn't exist or that has an incorrect number of arguments.

SOLUTION:

To avoid this error, be sure the function being called exists (see “show command” on
page 122) and that the proper number of arguments are passed to it.

SHR227E SHR227E Listing incomplete due to signalName signal

PROBLEM:

The resulting list of objects was incomplete because a signal was raised while it was
being displayed.

CAUSE:

If a large listing of objects is being emitted by the shell and the user pressed
Control-C, the resulting list that's displayed is incomplete.

SOLUTION:

To avoid this error, do not interrupt the listing being generated or displayed.
Appendix A, Messages and Troubleshooting 195

Shared Classes Library Messages
Message Code Message and Description

SHR228E SHR228E (ANYTYPE) TimeSpan specification: Unexpected element found near 'token' --
Cannot switch from longhand to shorthand, or vice-versa

PROBLEM:

A syntax error was encountered while converting a string into a timespan. If element
reads "longhand time unit", the string's content up to the token was successfully
parsed as shorthand timespan notation. If element reads "shorthand timespan
notation", the string's content up to the token was successfully parsed as longhand
timespan notation. In either case, the notation used inside the string is ambiguous
and cannot be parsed any further.

CAUSE:

This error can occur in srTool when a string is being converted into a timespan and
the string content does not follow the syntax rules for specifying timespans. For
example, these srTool commands will both fail with this error:
echo -x "2.5 days 4:5" as timespan
echo -x "35 : 2 minutes" as timespan
The first example starts off using longhand timespan notation, then switches to
shorthand (at the colon). The second example starts off in shorthand notation, then
switches to longhand (at "minutes").

SOLUTION:

To avoid this error, be sure the content of the string being converted follows the
syntax rules for specifying timespans. (See “Converting a String into a TimeSpan” on
page 36.) In particular, do not mix shorthand and longhand notation elements.

SHR229E SHR229E (ANYTYPE) TimeSpan specification: Time unit 'timeUnit' used more than
once in longhand notation

PROBLEM:

A syntax error was encountered while converting a string containing longhand
timespan notation into a timespan. The timeUnit found in the string was specified
more than once, making it impossible to definitively convert the string.

CAUSE:

This error can occur in srTool when a string is being converted into a timespan and
the string content does not follow the syntax rules for specifying timespans. For
example, this srTool command will fail with this error:
echo -x "2.5 days 4 minutes 3 days 2 seconds" as timespan
Note that the "days" time unit was specified more than once.

SOLUTION:

To avoid this error, be sure the content of the string being converted follows the
syntax rules for specifying timespans. (See “Converting a String into a TimeSpan” on
page 36.) In particular, when using longhand timespan notation, do not specify any
time unit more than once.
196 srTool Reference Guide

Shared Classes Library Messages
Message Code Message and Description

SHR230E SHR230E (ANYTYPE) Expected elementDescription -- instead got 'token'

PROBLEM:

A syntax error was encountered while converting a string into a timespan or
datetime. If elementDescription reads "numeric value", an unsigned decimal or floating
point value was expected, but token was found instead. If elementDescription reads
"time unit", the string's content up to but not including token was successfully parsed
as longhand timespan notation, and a valid time unit was expected instead of token.
In any of these cases, the notation used inside the string is ambiguous and cannot be
parsed any further.

CAUSE:

This error can occur in srTool when a string is being converted into a timespan or
datetime, and the string content does not follow the syntax rules for specifying
datetimes or timespans.
The next two examples finds "foo" instead of a numeric value:
echo -x "foo 5/5 5:30" as datetime
echo -x "3/foo" as datetime
This example finds "foo" instead of a time unit:
echo -x "2 days 35 foo" as timespan

SOLUTION:

To avoid this error, be sure the content of the string being converted follows the
syntax rules for specifying datetimes or timespans. (See “Converting a String into a
DateTime” on page 35 and “Converting a String into a TimeSpan” on page 36.)

SHR231E SHR231E (ANYTYPE) TimeSpan specification: Too many numeric fields in shorthand
notation, exceeds 'day' part -- found number fields

PROBLEM:

A syntax error was encountered while converting a string into a timespan. The
string's content was successfully parsed as a timespan using shorthand notation, but
it found number numeric fields, which exceeded four, the maximum possible.

CAUSE:

This error can occur in srTool when a string is being converted into a timespan, and
the string content does not follow the syntax rules for specifying timespans.
This example will cause this error:
echo -x "2:12:30:15:8" as timespan
Note that 8 corresponds to the seconds part, 15 to the minutes part, 30 to the hours
part, 12 to the days part. Because there are no parts beyond days in shorthand
notation, the 2 cannot correspond to any time part, thus making it impossible to
convert the string.

SOLUTION:

To avoid this error, be sure the content of the string being converted follows the
syntax rules for specifying timespans. (See “Converting a String into a TimeSpan” on
page 36.)
Appendix A, Messages and Troubleshooting 197

Shared Classes Library Messages
Message Code Message and Description

SHR232E SHR232E (ANYTYPE) DateTime specification: part already specified

PROBLEM:

A syntax error was encountered while converting a string into a datetime. The string
contained more than one part specification, where part is "Time", "Date" or "AM or
PM".

CAUSE:

This error can occur in srTool when a string is being converted into a datetime and the
string content does not follow the syntax rules for specifying datetimes. For example,
these srTool commands will all fail with this error:
echo -x "4/3 5/4" as datetime
Note that the "date" part was specified more than once.
echo -x "4:3 5:4" as datetime
Note that the "time" part was specified more than once.
echo -x "4/3 5:4 am pm" as datetime
Note that the "AM or PM" part was specified more than once.

SOLUTION:

To avoid this error, be sure the content of the string being converted follows the
syntax rules for specifying datetimes. (See “Converting a String into a TimeSpan” on
page 36.)

SHR233E SHR233E (ANYTYPE) DateTime specification: Meridian specification 'token' found in
date part

PROBLEM:

A syntax error was encountered while converting a string into a datetime. The string
contained a meridian specification in the date part.

CAUSE:

This error can occur in srTool when a string is being converted into a datetime and the
string content does not follow the syntax rules for specifying datetimes. For example,
this srTool command will fail with this error:
echo -x "4/3 am 5:4 pm" as datetime

Note that a meridian specification appears in the date part.

SOLUTION:

To avoid this error, be sure the content of the string being converted follows the
syntax rules for specifying datetimes. (See “Converting a String into a DateTime” on
page 35.) Specifically, do not put a meridian specification in the date portion of the
datetime specification -- it must be in the time part.
198 srTool Reference Guide

Shared Classes Library Messages
Message Code Message and Description

SHR234E SHR234E (ANYTYPE) DateTime specification: Floating point value 'value' not allowed
in field fieldNumber of part part

PROBLEM:

A syntax error was encountered while converting a string into a datetime. The
number found in fieldNumber of the part ("date" or "time") in the string was specified
using the floating point number value, which is not allowed.

CAUSE:

This error can occur in srTool when a string is being converted into a datetime and the
string content does not follow the syntax rules for specifying datetimes.
For example, this srTool command will fail with this error:
echo -x "4/3.5/2003 5 PM" as datetime
Note that a floating point number is used in the month field of the date part.

SOLUTION:

To avoid this error, be sure the content of the string being converted follows the
syntax rules for specifying datetimes. (See “Converting a String into a DateTime” on
page 35.) Specifically, do not use floating point values in either the date or time
portion of the datetime specification -- only unsigned positive decimal integers can be
used.

SHR235E SHR235E (ANYTYPE) DateTime specification: Illegal value 'value' for field field of part
part -- problem

PROBLEM:

A syntax error was encountered while converting a string into a datetime. The value
found in field ("year", "month", "day", "hour", "minute", or "second") of the part ("date"
or "time") in the string is not allowed. The problem part of the message describes the
specific problem.

CAUSE:

This error can occur in srTool when a string is being converted into a datetime and the
string content does not follow the semantic rules for specifying datetimes.
For example, these srTool commands all fail with this error:
echo -x "13/5/2003 5 PM" as datetime (Month part exceeds 12)
echo -x "5/0/2003 5 PM" as datetime (Day part is zero)
echo -x "10/5/2003 15:05 PM" as datetime (Hour part implies
military clock, yet meridian specified)
echo -x "10/5/2003 1:65 PM" as datetime (Minute part exceeds
59)
As should be clear now, there are many other possible ways to cause this error.

SOLUTION:

To avoid errors of this type, be sure the numeric values of each field in the date
and/or time parts of the string being converted are legitimate. (See “Converting a
String into a DateTime” on page 35.)
Appendix A, Messages and Troubleshooting 199

Shared Classes Library Messages
Message Code Message and Description

SHR236E SHR236E (ANYTYPE) DateTime specification: Too fewOrMany dateOrTime fields

PROBLEM:

A syntax error was encountered while converting a string into a datetime. Too few or
too many numeric fields were found in the date or time part in the string.

CAUSE:

This error can occur in srTool when a string is being converted into a datetime and the
string content does not follow the syntax rules for specifying datetimes.
For example, these srTool commands all fail with this error:
echo -x "1/2/5/3 5 PM" as datetime (Too many date fields)
echo -x "10/5/2003 5:5:23:48 PM" as datetime (Too many time fields)

SOLUTION:

To avoid this error, be sure the content of the string being converted follows the
syntax rules for specifying datetimes. (See “Converting a String into a DateTime” on
page 35.) Specifically, be sure the proper number of date or time fields are specified.

SHR237E SHR237E (ANYTYPE) DateTime specification: No date or time part specified

PROBLEM:

A syntax error was encountered while converting a string into a datetime. No date or
time part was found in the string.

CAUSE:

It should not be possible to receive this message, since missing fields or delimiters
will elicit messages SHR236E or SHR230E.

SOLUTION:

Be sure the content of the string being converted follows the syntax rules for
specifying datetimes. (See “Converting a String into a DateTime” on page 35.)

SHR239E SHR239E (CDataSupplier) Unable to provide resulting value for entity 'name' since no
method was supplied to obtain this result

PROBLEM:

While computing the result of an expression, the entity (a variable, function or
property specification) having the given name could not be obtained, resolved or
computed.

CAUSE:

This problem should not occur during normal operation.

SOLUTION:

If the problem still happens, note other applicable messages that may accompany this
one, then please contact Technical Support.
200 srTool Reference Guide

Shared Classes Library Messages
Message Code Message and Description

SHR240E SHR240E (XMLParse) While in XMLState state, expected syntaxElement, instead got
token

PROBLEM:

A syntax error was found in the XML code being parsed. The XMLState can be any of
XML_Invalid, XML_InNewTag, XML_InBeginTag, XML_InBeginTagParamName,
XML_InBeginTagParamValue, XML_InEndTag or XML_InContent. The parser
expected the syntaxElement but instead found the given token.

CAUSE:

This is typically caused by improperly coded XML.

SOLUTION:

Correct the syntax of the offending XML code then try the operation again.

SHR241E SHR241E (XMLParse) End tag tagName found without corresponding start tag

PROBLEM:

A syntax error was found in the XML code being parsed. An end tag with the given
tagName was encountered, but no begin tag with that same name preceded it.

CAUSE:

This is typically caused by a misspelled tag name in the XML stream.

SOLUTION:

Correct the syntax of the offending XML code then try the operation again.

SHR242E SHR242E (XMLParse) End tag tagName out of sequence -- expected end tag for
currentTagName

PROBLEM:

A syntax error was found in the XML code being parsed. An end tag with the given
tagName was encountered, but the end tag for the currentTagName was expected,
indicating an out-of-sequence error.

CAUSE:

This is typically caused by mixing up the order of end tags, or forgetting to insert an
end tag in the XML stream.

SOLUTION:

Correct the end tag order or add the missing end tag in the offending XML code then
try the operation again.
Appendix A, Messages and Troubleshooting 201

Shared Classes Library Messages
Message Code Message and Description

SHR243E SHR243E (XMLParse) Invalid parse state (stateCode) -- internal failure

PROBLEM:

The XML parser got into an invalid state.

CAUSE:

This problem should not occur during normal operation.

SOLUTION:

Note any other applicable messages that may accompany this one, then please
contact Technical Support.

SHR244W SHR244W (FromXMLNode) In tag, encountered an unexpected XML node: nodeDump

PROBLEM:

While creating an object from its XML specification, an unexpected XML node was
encountered in the given tag.

CAUSE:

This is typically caused by improperly coded XML.

SOLUTION:

Correct the offending XML code then try the operation again.

SHR245E SHR245E (FromXMLNode) Unable to construct 'parentTag' object from XML -- missing
'childTag' child node

PROBLEM:

While creating an object from its XML specification (using the parentTag tag), a
required XML node with the tag childTag was missing from the XML stream.

CAUSE:

This is typically caused by improperly coded XML.

SOLUTION:

Correct the offending XML code then try the operation again.

SHR246E SHR246E (FromXMLNode) Unable to construct 'parentTag' object from XML -- invalid
data 'badData' found in 'tagName' tag

PROBLEM:

While creating an object from its XML specification (using the parentTag tag), the tag
named tagName contained invalid data.

CAUSE:

This is typically caused by improperly coded XML.

SOLUTION:

Correct the offending XML code then try the operation again.
202 srTool Reference Guide

Shared Classes Library Messages
Message Code Message and Description

SHR247E SHR247E (FromXMLNode) Unable to construct 'parentTag' object from XML -- more
than one 'childTag' tag found

PROBLEM:

While creating an object from its XML specification (using the parentTag tag), a child
node tagged childTag appeared more than once, making it ambiguous as to which one
to use.

CAUSE:

This is typically caused by improperly coded XML.

SOLUTION:

Correct the offending XML code then try the operation again.

SHR248E SHR248E (Dictionary) Failure in method, symbol name is 'name', value is 'value' – reason

PROBLEM:

A failure occurred in the given method (Add, Change, Delete, SetReadOnly or
SetReadWrite) of the Dictionary facility for the given symbol name and its
corresponding data value. The reason for the failure is also given in the message.

CAUSE:

Add failures are usually because the symbol already exists. Change failures are
usually because the symbol was marked as read-only. Delete, SetReadOnly and
SetReadWrite failures happen usually because the symbol does not exist.

SOLUTION:

Be sure when adding a symbol that it does not already exist; or when changing a
symbol’s value that it exists and that it is not read-only; or when deleting or altering
the access attributes of a symbol, be sure that the symbol exists.

SHR249E SHR249E (ProcessOperand) Unable to get value of variable 'symbolName'

PROBLEM:

The value of the symbolic variable with the name symbolName in an expression being
evaluated could not be obtained from any of the data suppliers registered with the
expression evaluator.

CAUSE:

The most common cause of this error is the misspelling of a variable name.

SOLUTION:

Be sure that all variables used in the expression are defined.
Appendix A, Messages and Troubleshooting 203

Shared Classes Library Messages
Message Code Message and Description

SHR250E SHR250E (DoTypeCastOperation) While converting 'dataValue', desired type 'dataType'
(ordinalValue) was unexpected

PROBLEM:

The dataValue value was asked to convert into an illegal or unknown dataType that has
the given ordinalValue.

CAUSE:

The most common cause of this error is the misuse of the as operator.

SOLUTION:

Be sure that the datatype used on the right-hand side of the as operator is valid. See
“Data Types” on page 32.

SHR252E SHR252E (CDebugLevel) Unable to change debug level to newLevel -- level must be
between minLevel and maxLevel, inclusive

PROBLEM:

An attempt was made to change the debug level of a configurable module or object to
the given newLevel, which was outside of the legal range of minLevel, the minimum,
and maxLevel, the maximum.

CAUSE:

The desired debug level newLevel was outside of the legal range of minLevel, the
minimum, and maxLevel, the maximum.

SOLUTION:

Be sure that the desired debug level is greater than or equal to minLevel and less than
or equal to maxLevel.

SHR253I SHR253I (CDebugLevel) Debug level changed from previousLevel to newLevel

CAUSE:

The debug level of a configurable module or object was changed from its previous
value previousLevel to the new value newLevel.

SHR254E SHR254E (CExpression::DoBinaryOperation) Divide by zero error (numerator=numer,
denominator=denom)

PROBLEM:

While evaluating an expression, the denominator operand denom passed to the binary
operator OP_Divide or OP_Mod was zero, resulting in a divide-by-zero exception.

CAUSE:

The denominator value denom of the division or modulo operation was zero.

SOLUTION:

Try to avoid situations in which the denominator of a division or modulo division
operation is zero.
204 srTool Reference Guide

Shared Classes Library Messages
Message Code Message and Description

SHR255I SHR255I rmsError

CAUSE:

This message provides a further explanation for an RMS error that occurred. It is
usually preceded by another message that provides the context in which the failure
occurred.

SHR256W SHR256W (CConfigurable) Unable to set configuration parameter named 'paramName'
to value 'newValue' -- no such parameter

PROBLEM:

An attempt was made to change the value of a parameter with the name paramName
of a configurable module or object to the given newValue, but the module or object did
not recognize the parameter with that name.

CAUSE:

The configurable module or object did not have a parameter with that name. This is
commonly due to misspelling the parameter name.

SOLUTION:

Be sure to spell the parameter name correctly, and that the configurable module or
object has a parameter with that name.

SHR257E SHR257E (CConfigurable) Unable to get configuration parameter named 'paramName'
-- no such parameter

PROBLEM:

An attempt was made to retrieve the value of a parameter with the name paramName
from a configurable module or object, but the module or object did not recognize the
parameter with that name.

CAUSE:

The configurable module or object did not have a parameter with that name. This is
commonly due to misspelling the parameter name.

SOLUTION:

Be sure to spell the parameter name correctly, and that the configurable module or
object has a parameter with that name.
Appendix A, Messages and Troubleshooting 205

High-Level Client Interface Messages
High-Level Client Interface Messages
Following are the messages that originate from inside the high-level client interface
module.

Message Code Message and Description

HLS601E HLS601E (CRXObjectWithProperties::GetSubObjects) parentObject is unable to provide
childObjectKind

PROBLEM:

The given parentObject cannot provide an iterator for objects of the given
childObjectKind.

CAUSE:

The parent object does not and cannot contain objects of the desired kind. For example,
job objects cannot provide a destinationRule iterator.

SOLUTION:

Do not ask parentObject for childObjectKind iterators for object kinds that it does not and
cannot contain.

HLS603I HLS603I objectKind cache starting, using RMS 'name'...

CAUSE:

This message means that the cache containing objects of type objectKind is starting, and
will receive update events from the Replication Management Server named name. This
message will appear in the “Trace_HLSOB...” log file if the cache’s debugLevel
configuration parameter is set to 1 or higher.

HLS604I HLS604I objectKind cache started, objectCount object(s)

CAUSE:

This message means that the cache containing objects of type objectKind has
successfully started, and initially contains objectCount objects. This message will
appear in the “Trace_HLSOB...” log file if the cache’s debugLevel configuration
parameter is set to 1 or higher.

HLS605I HLS605I objectKind cache stopped

CAUSE:

This message means that the cache containing objects of type objectKind has stopped.
This message will appear in the “Trace_HLSOB...” log file if the cache’s debugLevel
configuration parameter is set to 1 or higher.
206 srTool Reference Guide

High-Level Client Interface Messages
Message Code Message and Description

HLS606E HLS606E objectKind cache event subscription to RMS failed, objectCount object(s),
uncommittedCount uncommitted, iteratorCount iterator(s) affected

PROBLEM:

The database update event subscription to the Replication Management Server failed
for the cache containing objects of type objectKind. At the time this happened, the cache
contained objectCount committed objects, uncommittedCount uncommitted objects, and
had iteratorCount open iterators registered to it. This message is usually immediately
followed by the HLS605I message.

CAUSE:

Some of the most common reasons for this kind of failure are: the RMS’s network
connection may have failed; or the RMS or ENL services on the RMS were stopped; or
the client host machine’s network connection may have failed; or the client host
machine’s ENL service may have stopped.

SOLUTION:

Check to make sure that the RMS machine is operable and its RMS and ENL services
are started. Also verify that the host machine can “see” the RMS machine on the
network. Then ensure that the local host machine’s ENL service is started.

HLS607W HLS607W (FilterWithIndexingSpec) Index range indexRange ignored -- not in result set

PROBLEM:

An indexing specification contained an index range that did not intersect any of the
resulting set of objects. This is only a warning – it does not indicate that the filtering
operation failed.

CAUSE:

The indexRange was out of bounds from the object list that was at hand. For example,
this can happen in srTool with the command list jobs 13 thru 24, if there was,
say, only one job defined.

SOLUTION:

Be sure that the index ranges that are supplied in indexing specifications are valid for
the resulting object set.

HLS608W HLS608W (FilterWithIndexingSpec) Index range indexRange ignored -- not valid

PROBLEM:

An indexing specification contained an indexRange that was invalid.

CAUSE:

This is caused by the indexRange having an end index value that is numerically less
than the start index value.

SOLUTION:

Because index ranges are automatically created in a valid state, this error should not
ever occur during normal operation of srTool or srConsole. If this warning persists,
please contact Technical Support.
Appendix A, Messages and Troubleshooting 207

High-Level Client Interface Messages
Message Code Message and Description

HLS609W HLS609W (FilterWithGroupingSpec) Grouping spec groupingSpec ignored -- not valid

PROBLEM:

The grouping specification groupingSpec that was being used to filter a set of objects
was invalid.

CAUSE:

This is caused by an uninitialized or cleared groupingSpec being used to filter a set of
objects.

SOLUTION:

This error should not ever occur during normal operation of srTool or srConsole. If this
warning persists, please contact Technical Support.

HLS610E HLS610E exceptionType Exception caught in file fileName on line lineNumber

PROBLEM:

A run-time exception of type exceptionType (“Memory” or “General”) was caught at
line lineNumber of the file fileName.

CAUSE:

This usually is due to insufficient system memory.

SOLUTION:

Provided there is sufficient system memory for the kind of task being attempted, this
error should not occur during normal operation of srTool or srConsole. If this warning
persists, contact Technical Support.
208 srTool Reference Guide

High-Level Client Interface Messages
Message Code Message and Description

HLS611E HLS611E (CheckProperties) Property 'propertyName' (propertyID) cannot be specified at
creation time for 'objectKind' objects, but was specified to be 'dataValue'

PROBLEM:

An initial value of dataValue for the property having the name propertyName (and
ordinal value propertyID) was specified for a new object of type objectKind being
created. That particular property is not allowed to be specified for new objects.

CAUSE:

This error usually manifests itself in srTool through the add command in which the
user has specified an initial property value, and that property’s “RequiredToCreate”
meta-property is “CannotBeSpecified”. For example, the command add job with
type=OneToOne, pairCount=0 will produce this error, because the PairCount
property cannot be specified at creation time for job objects.

SOLUTION:

Be sure that any initial property values are for properties that can legally be set at
object creation time. In the “srTool Object Reference” note the “Require to Create”
column in the property tables for each object. Also, the Property meta-object’s
RequiredToCreate property indicates whether a property can be specified at object
creation time. For example, the srTool command get name, requiredToCreate
of all properties whose requiredToCreate NE CannotBeSpecified of
objectKind ?FileReplicationJob? will display just those properties that are
legal to specify when creating new jobs.

HLS612E HLS612E (CheckProperties) Property 'propertyName' (propertyID) is required for creating
'objectKind' objects, but was not specified

PROBLEM:

The property having the name propertyName (and ordinal value propertyID) was not
specified for a new object of type objectKind being created. That particular property is
required to be specified for new objects.

CAUSE:

This error usually manifests itself in srTool through the add command in which the
user hasn’t specified an initial property value, and that property’s “RequiredToCreate”
meta-property is “MustBeSpecified”. For example, the command add job will produce
this error, because the Type property must be specified at creation time for job objects.

SOLUTION:

Be sure that any initial property values that are required for objectKind objects are set
at object creation time. In the “srTool Object Reference” note the “Require to Create”
column in the property tables for each object. Also, the Property meta-object’s
RequiredToCreate property indicates if a property must be specified at object creation
time. For example, the srTool command get name, requiredToCreate of all
properties whose requiredToCreate EQ MustBeSpecified of
objectKind ?FileReplicationJob? will display just those properties that must
be specified when creating new jobs.
Appendix A, Messages and Troubleshooting 209

High-Level Client Interface Messages
Message Code Message and Description

HLS613W HLS613W (CheckProperties) For creating 'objectKind ' object(s), property 'propertyName'
(propertyID) was of type 'actualDataType', but should be of type 'requiredDataType'

PROBLEM:

The property having the name propertyName (and ordinal value propertyID) that was
specified for a new object of type objectKind being created had a value of type
actualDataType, but should have been of type requiredDataType.

CAUSE:

This error usually manifests itself in srTool through the add command in which the
user has specified one or more initial property values, and one of the property’s data
values is of the wrong data type. For example, the command add job with type
= ?OneToMany? will produce this error, because the Type property must be of type
uint32.

SOLUTION:

Be sure that any initial property values being specified while creating objectKind
objects are set to values with the proper data types expected for them. In the “srTool
Object Reference” note the “Data Type” column in the property tables for each object.
Also, the Property meta-object’s DataType property indicates the intrinsic data type of
the property. For example, the srTool command get name, dataType of all
properties of objectKind ?FileReplicationJob? will show the names and
data types of all properties of jobs.

HLS614I HLS614I Transaction transactionID created in methodName for object

CAUSE:

This message means that a new transaction with the globally unique identifier
transactionID has been created for the given object. This usually means the object is
about to be edited (changed) or deleted, although for jobs, it can also mean that a job is
being created. This message will appear in the “Trace_HLSOB...” log file if the
debugLevel configuration parameter of the object being edited is set to 1 or higher; for
jobs being created, this message always appears in the log.

HLS615I HLS615I Transaction transactionID committed in methodName for object

CAUSE:

This message means that the existing transaction with the globally unique identifier
transactionID has been committed for the given object. This usually means the object
creation, or its changes, or its deletion has been committed on the RMS. This message
will appear in the “Trace_HLSOB...” log file if the debugLevel configuration
parameter of the object being added, changed or deleted is set to 2 or higher.
210 srTool Reference Guide

High-Level Client Interface Messages
Message Code Message and Description

HLS615E HLS615E Transaction transactionID commit failed in methodName on object object -- reason

PROBLEM:

The existing transaction with the globally unique identifier transactionID could not be
committed for the given object for the given reason. This message will appear in the
“Trace_HLSOB...” log file if the debugLevel configuration parameter of the object
being added, changed or deleted is set to 1 or higher.

CAUSE:

This problem can be caused by several things, including bad network connections for
the client machine running srTool or srConsole; bad network connections for the RMS;
or a lack of free disk space on the RMS. This message is normally followed by one or
more additional messages that should provide other information about the actual
cause of the commit failure.

SOLUTION:

Use the information gleaned from the additional messages that follow this one to
diagnose and correct the cause of the failure.

HLS616I HLS616I Transaction transactionID about to commit action of count object(s): objectListing

CAUSE:

This message means that the action (creation, change or deletion) of count objects is
about to be committed for the existing transaction with the globally unique identifier
transactionID. A listing of the objects being added, changed or deleted immediately
follows this message. This message will appear in the “Trace_HLSOB...” log file if the
debugLevel configuration parameter of the object being added, changed or deleted is
set to 2 or higher.

HLS617I HLS617I Transaction fromTransactionID merged into transaction toTransactionID in
CRXRMSDBObject::MergeChanges

CAUSE:

This message means that all creations, changes and deletions associated with the
existing transaction with the globally unique identifier fromTransactionID will be
merged into the existing transaction with the globally unique identifier
toTransactionID. This message will appear in the “Trace_HLSOB...” log file if the
debugLevel configuration parameter of the object being added, changed or deleted is
set to 2 or higher.
Appendix A, Messages and Troubleshooting 211

High-Level Client Interface Messages
Message Code Message and Description

HLS617E HLS617E Transaction fromTransactionID merge into transaction toTransactionID failed in
CRXRMSDBObject::MergeChanges – reason

PROBLEM:

The existing transaction with the globally unique identifier fromTransactionID (which
should be “{00000000-0000-0000-0000-000000000000}”) could not be merged
into the transaction having the globally unique identifier toTransactionID because of
the specified reason (which should be “RXRESULT_IllegalOperation”). This message
will appear in the “Trace_HLSOB...” log file if the debugLevel configuration
parameter of the object being added, changed or deleted is set to 1 or higher.

CAUSE:

This is caused by an object being asked to merge its changes into another transaction
when its fromTransactionID is {00000000-0000-0000-0000-000000000000},
which means the object was not being edited. This problem should never occur during
normal use of srTool or srConsole.

SOLUTION:

If the problem persists, please contact Technical Support.

HLS618I HLS618I Transaction transactionID recording change in property propertyName of object:
newValue – action uncommitted list

CAUSE:

This message means that the object’s property propertyName was changed to the value
newValue under the transaction having the globally unique identifier transactionID. If
action is “added to,” this means that the change is the first change ever recorded for
that object’s property under the transaction. If action is “modified” or “patched,” it
means that the object’s property has been changed before under the transaction. This
message will appear in the “Trace_HLSOB...” log file if the debugLevel configuration
parameter of the object being changed is set to 3 (the maximum).

HLS620E HLS620E (InternalCheckForValidPathVolume) Volume 'driveLetter' of path 'pathSpec' of
server 'serverName' is not NTFS

PROBLEM:

The volume having the given driveLetter of the path pathSpec of the server named
serverName does not have the NTFS volume format.

CAUSE:

This can be caused by attempting to add a path rule to a job and the path rule’s path
property refers to a directory that is on a non-NTFS volume. This error can also be
caused by a destination rule that refers to a non-NTFS volume.

SOLUTION:

Be sure that the path properties of path rule and destination rule objects are rooted to
NTFS-formatted volumes.
212 srTool Reference Guide

High-Level Client Interface Messages
Message Code Message and Description

HLS621E HLS621E (AddReplicationPair) 'ServerObject' does not have a valid default target path

PROBLEM:

While attempting to add a new replication pair to an existing job, the ServerObject was
found to not have a valid default target path.

CAUSE:

This is normally caused by using a server whose DefaultTargetPath property has been
mis-configured to a path that doesn’t exist or to an invalid path. In rare cases, it can be due
to misconfigured software on the server itself.

SOLUTION:

Be sure that the DefaultTargetPath property of the ServerObject in question is not empty, is
valid, and actually exists on that server.

HLS622E HLS622E (CRXCredentialDBNT) operation: Host OS function 'functionName' failed

PROBLEM:

The operation (Open, Get, Put, Find, Delete or Enumerate) involving credential objects
failed inside the host operating system function named functionName (for example,
OpenRegKeyIfExists, RegQueryValueEx, and so on).

CAUSE:

This problem should not normally occur during normal operation of srTool or srConsole.

SOLUTION:

If this problem persists, please contact Technical Support.

HLS623E HLS623E (CanConnect) Unable to connect to serverObject -- server not available

PROBLEM:

The serverObject’s IsAvailable property was “false” and a request was made to connect to
the server.

CAUSE:

This problem is most commonly seen when adding a replication pair to a job, and one of
the servers of the new pair is unavailable.

SOLUTION:

Be sure that the server being used in a new replication pair being added to a job is
powered on, connected to the network and its replication services started. Also be sure
that the host machine running srTool or srConsole can “see” the other server on the
network.

HLS624I HLS624I Transaction transactionID released in EndEdit

CAUSE:

This message means that the transaction having the globally unique identifier
transactionID has been released. No other editing can be done using that transactionID.
This message will appear in the “Trace_HLSOB...” log file if the debugLevel configuration
parameter of the object being edited is set to 1 or higher.
Appendix A, Messages and Troubleshooting 213

High-Level Client Interface Messages
Message Code Message and Description

HLS625I HLS625I Transaction transactionID aborted in DiscardChanges

CAUSE:

This message means that all creations, changes and/or deletes recorded in the
transaction having the globally unique identifier transactionID have been discarded.
The transaction is not released and can be used for other creations, changes and/or
deletes. This message will appear in the “Trace_HLSOB...” log file if the debugLevel
configuration parameter of the object being edited is set to 1 or higher.

HLS626I HLS626I Object locked for exclusive editing by lock lockID

CAUSE:

This message means that the given object has been locked for exclusive access under
the globally unique identifier lockID. This message will appear in the
“Trace_HLSOB...” log file if the debugLevel configuration parameter of the object
being locked is set to 1 or higher. It will also appear in the log for newly created jobs.

HLS627I HLS627I Object unlocked from exclusive editing -- lock lockID released

CAUSE:

This message means that the given object has been unlocked from exclusive access
under the globally unique identifier lockID. This message will appear in the
“Trace_HLSOB...” log file if the debugLevel configuration parameter of the object
being locked is set to 1 or higher.

HLS628E HLS628E (CRXFileReplicationJob) Illegal value 'newName' for Name property --
duplicated, already exists

PROBLEM:

A job was being created or its Name property was being changed, and the specified
newName matched the name of another existing job.

CAUSE:

This error occurs whenever the user attempts to create a job that has the same name as
another job, or whenever the user attempts to rename a job to the same name as
another.

SOLUTION:

Be sure that the newName is unique among all other jobs.
214 srTool Reference Guide

High-Level Client Interface Messages
Message Code Message and Description

HLS629E HLS629E (moduleName) Illegal value 'dataValue' for propertyName property -- length
exceeds maximum allowable value (maxLength) or is empty

PROBLEM:

The property named propertyName was being specified for a new object being created
or for an existing object being changed, and the dataValue was either empty and an
empty value was not allowed, or its length exceeded maxLength, the maximum
allowable length.

CAUSE:

This error can occur whenever a character-string- or path- type property is initialized
while creating a new object or is set while changing an existing object. Some of these
properties have different string or path length limitations, depending on the technical
requirements underlying them. Some properties cannot be set to the empty string,
while others can.

SOLUTION:

Be sure to follow the rules for setting property values for the objects of interest.
Consult the property tables in “srTool Object Reference” on page 135.

HLS630E HLS630E (moduleName) Illegal value 'dataValue' for propertyName property -- enumerated
value outside legal bounds of minValue thru maxValue

PROBLEM:

The property named propertyName was being specified for a new object being created
or for an existing object being changed, and the dataValue was less than minValue or
greater than maxValue.

CAUSE:

This error can occur whenever a property is initialized while creating a new object or is
set while changing an existing object. Many of these properties have different
restrictions on the values they can have, depending on the technical requirements
underlying them.

SOLUTION:

Be sure to follow the rules for setting property values for the objects of interest. Consult
the property tables in “srTool Object Reference” on page 135.
Appendix A, Messages and Troubleshooting 215

High-Level Client Interface Messages
Message Code Message and Description

HLS631E HLS631E (ReplicationPair) Incompatible servers: source OS is sourceOS, target OS is
targetOS

PROBLEM:

A new replication pair was being added to a job, and the servers had incompatible
operating systems on them.

CAUSE:

This error was more prevalent in older versions of Storage Replicator, which used to
operate on Windows NT version 4. This is no longer the case, so it should not be
possible to encounter this message during normal use of srTool or srConsole.

SOLUTION:

If the problem persists, please contact Technical Support.

HLS632E HLS632E (ReplicationPair) Unable to add more than one pair to one-to-one job

PROBLEM:

An attempt was made to add a new replication pair to an existing one-to-one job.

CAUSE:

This error is usually caused by srTool users trying to add a replication pair to a
one-to-one job that already has one.

SOLUTION:

To replace the replication pair that’s inside a one-to-one job in srTool, first delete the
existing pair (using the delete command), then add the new pair to the job (using the
add command).

HLS633E HLS633E (functionName) Duplicate objectKind -- object already exists

PROBLEM:

An attempt was made to add a new object of type objectKind but the object already
exists.

CAUSE:

This error is usually caused by srTool users inadvertently trying to add an object when
it already exists, or trying to change an object that would conflict with another existing
object.

SOLUTION:

When adding pairs to jobs, be sure that no other pair has the same source and target
servers. When adding path rules, be sure no other rule has the same source server and
path property. When adding selection rules, be sure no other selRules in the path rule
have matching nameSpec, isExclude and isRecursive properties. When changing the
targetServer property of destination rules, be sure no other destination rules of the
owning path rule have a matching target server.
216 srTool Reference Guide

High-Level Client Interface Messages
Message Code Message and Description

HLS634E HLS634E (AddReplicationPair) Illegal sourceServerOrTargetServer serverObject -- cannot
use same server as publicationOrCentralization job's established JCD (currently
serverName)

PROBLEM:

The specified sourceServer property of a new pair being added to a centralization job
matches the name of the established target server of the job, or the specified
targetServer of a new pair being added to a publication job matches the name of the
established source server of the job. Either case is illegal.

CAUSE:

This message is most commonly seen by srTool users who are trying to add a pair to an
existing centralization or publication job. For example, given a publication job “Foo”
that replicates data from server “A” to servers “X” and “Y”, this error would occur for
the following srTool command:

add pair to job ?Foo? with sourceServer = ?Z?, targetServer =
?A?

SOLUTION:

Be sure that new pairs added to publication (one-to-many) jobs use a targetServer that
differs from the established source server of the job’s other pairs. Similarly, be sure that
new pairs added to centralization (many-to-one) jobs use a sourceServer that differs
from the established target server of the job’s other pairs.

HLS635E HLS635E (AddReplicationPair) Illegal sourceServerOrTargetServer serverObject -- cannot
use sourceServerOrTargetServer that differs from publicationOrCentralization job's
established JCD (currently serverName)

PROBLEM:

The specified sourceServer property of a new pair being added to a publication job
doesn’t match the name of the established source server of the job, or the specified
targetServer of a new pair being added to a centralization job doesn’t match the name
of the established target server of the job. Either case is illegal.

CAUSE:

This message is most commonly seen by srTool users who are trying to add a pair to an
existing centralization or publication job. For example, given a publication job “Foo”
that replicates data from server “A” to servers “X” and “Y”, this error would occur for
the following srTool command:

add pair to job ?Foo? with sourceServer = ?B?, targetServer =
?Z?

SOLUTION:

Be sure that new pairs added to publication (one-to-many) jobs use a targetServer that
matches the established source server of the job’s other pairs. Similarly, be sure that
new pairs added to centralization (many-to-one) jobs use a sourceServer that matches
the established target server of the job’s other pairs.
Appendix A, Messages and Troubleshooting 217

High-Level Client Interface Messages
Message Code Message and Description

HLS636E HLS636E (LookupObjectByName) No such objectKind object with name 'objectName'
(using transaction ID transactionID)

PROBLEM:

An object of type objectKind could not be found that had the name objectName.

CAUSE:

This is usually caused by an srTool user mis-spelling the name of a server while
adding a pair, pathRule or destinationRule object.

SOLUTION:

Be sure to correctly specify the name of a server or use an property reference in an
expression instead (for example, name of first server whose…).

HLS637E HLS637E (GetProperty) Property 'propertyName' (propertyID) does not exist in property
table of object

PROBLEM:

A property named propertyName (whose ordinal value is propertyID) was requested
from the given object which did not have such a property.

CAUSE:

This error should never happen in the console, but it is relatively easy to make it
happen in srTool, such as, for example, in this command:

echo -x sourceServer of first rms

Objects of type RMS do not have a sourceServer property.

SOLUTION:

In srTool, be sure to specify only those properties that truly exist for the object(s) of
interest. Consult the property tables in “srTool Object Reference” on page 135.

HLS638E HLS638E (InternalTestForIllegalNameSpec) Illegal character 'illegalChar' found in path
specification 'pathSpec' -- these are illegal: illegalCharacters

PROBLEM:

The path specification pathSpec contained an illegal character illegalChar.

CAUSE:

This error is caused by specifying a path property that contains one or more illegal
characters. On Windows, the characters <, >, | and / cannot comprise a file or path
name. This error can readily be produced in srTool:

add rule to job "X" with sourceserver = "Y", path =
"C:\\foo>bar"

The ‘>’ character is not allowed in the path property.

SOLUTION:

Be sure that any paths that are specified in srTool do not contain the characters that are
disallowed.
218 srTool Reference Guide

High-Level Client Interface Messages
Message Code Message and Description

HLS638W (InternalTestForIllegalNameSpec) Possible unintended character suspect found in path
specification pathSpec

PROBLEM:

The path specification pathSpec contained a character suspect that may not have been
intended by the user.

CAUSE:

This warning is caused by specifying a path property that contains one or more
characters that are easily produced accidentally in srTool. Many users will forget that
backslash characters, the path delimiter in Windows file systems, are used as an escape
character for srTool string literals. Thus, they may inadvertently type the following
srTool command:

add rule to job "X" with sourceserver = "Y", path =
"c:\reports\tuesday"

srTool will gladly add the path anchored to the following path:

c : CR e p o r t s HT u e s d a y

...where CR is a carriage-return character, and HT is a horizontal tab character. This is
probably not what most users would expect nor desire; thus, the reason for this
warning message. This warning is telling the user to instead code the following:

add rule to job "X" with sourceserver = "Y", path =
"c:\\reports\\tuesday"

SOLUTION:

Be sure that any paths that are specified in srTool do not contain escaped characters
unless they are explicitly needed. See the section on "string constants".

HLS639I HLS639I (SOB_Open) HLSOB version is now open

CAUSE:

This message means that the high-level client interface to the underlying replication
system, having the given version, was successfully initialized and opened, which can
only happen if the RMS is found on the network and the local host machine’s ENL
service is started and running. This message will always appear in the
“Trace_HLSOB...” log file each time an instance of the console or srTool is started.

HLS640I HLS640I (SOB_Close) HLSOB is now closed

CAUSE:

This message means that the high-level client interface was properly closed. This
message will always appear in the “Trace_HLSOB...” log file each time an instance of
the console or srTool is closed.
Appendix A, Messages and Troubleshooting 219

High-Level Client Interface Messages
Message Code Message and Description

HLS641E HLS641E (CRXIterator) Open: Live updates were requested but no CRXLiveUpdater
was specified

PROBLEM:

An iterator was asked to open with live update support, but no live-updater instance
was supplied.

CAUSE:

This error should never happen during normal operation of srTool or the console.

SOLUTION:

If the problem persists, please contact Technical Support.

HLS642W HLS642W (objectKind Cache) Object objectID changed, but was not in the cache

PROBLEM:

The cache containing objects of type objectKind was notified by the event redirector
that one or more properties of the object having the globally unique identifier objectID
had changed, but the object was not found in the cache.

CAUSE:

This can happen under rare conditions when the console or srTool is launched while
thousands of changes are taking place in jobs, pairs, scripts, rules, selRules, destRules
and/or servers.

SOLUTION:

Generally, there is no need to take any action. If the problem occurs in the absence of
any RMS activity, please contact Technical Support.

HLS643E HLS643E (CRXServer) Server object was created with a NULL (empty) name

PROBLEM:

While attempting to contact a server object for purposes of a remote procedure call
(RPC), it was found that the server had no name.

CAUSE:

This error should not happen during normal operation of srTool or the console.

SOLUTION:

If the problem persists, please contact Technical Support.
220 srTool Reference Guide

High-Level Client Interface Messages
Message Code Message and Description

HLS644E HLS644E (CRXObjectContainer::GetRootObjects) objectKind objects are not root-level
objects

PROBLEM:

An iterator for root-level objects of type objectKind was requested, but such objects are
not root-level objects..

CAUSE:

This error most commonly occurs in srTool when there is no default object
specification in use. For example, these two commands will cause the error:

use none; count all jobs

Job objects come from RMS objects, not from the root-level.

SOLUTION:

Be sure that all object specifications, in the absence of a default object spec, are rooted
with one of the root-level object types. See “srTool Object Hierarchy” on page 64.

HLS645I HLS645I (CRMSDBEventRedirector) Starting event redirector

CAUSE:

This message means that the event redirector is starting. This message will appear in
the “Trace_HLSOB...” log file if the debugLevel configuration parameter of the
redirector object is set to 1 or higher.

HLS646I HLS646I (CRMSDBEventRedirector) Event redirector verb

CAUSE:

This message means that something happened to state of the event redirector,
indicated by the verb (which is either “paused,” “resumed” or “started”). This message
will appear in the “Trace_HLSOB...” log file if the debugLevel configuration
parameter of the redirector object is set to 1 or higher.

HLS647I HLS647I (CRMSDBEventRedirector) Event redirector ended, statisticsDump

CAUSE:

This message means that the event redirector has stopped. A dump of the redirector’s
run-time statistics immediately follows the message. This message will appear in the
“Trace_HLSOB...” log file if the debugLevel configuration parameter of the redirector
object is set to 1 or higher.
Appendix A, Messages and Troubleshooting 221

High-Level Client Interface Messages
Message Code Message and Description

HLS648E HLS648E (CRXObjectWithProperties) CreateSubObject: Unable to add objectKind object
to parentObject

PROBLEM:

The parentObject could not add a child object of type objectKind because such object
types don’t belong to the parent type of object.

CAUSE:

This error most commonly occurs in srTool when trying to add an object using the add
command but there’s no “to” clause. For example, this command will cause this error:

add pair to first rms

This command will fail because pairs belong to jobs, not RMSs.

SOLUTION:

Be sure that when adding an object to a parent object, that the parent object can contain
an object of type objectKind. See “srTool Object Hierarchy” on page 64.

HLS649E HLS649E (objectKind) Property 'propertyName' expected 'dataType' data

PROBLEM:

The property named propertyName for a replication pair being created or changed was
being set to a data value that was not of the expected type dataType.

CAUSE:

This error most commonly occurs in srTool when trying to add an object using the add
command but there’s no “to” clause. For example, this command will cause this error:

add pair to first rms

This command will fail because pairs belong to jobs, not RMSs.

SOLUTION:

Be sure that when adding an object to a parent object, that the parent object can contain
an object of type objectKind. See “srTool Object Hierarchy” on page 64.

HLS650E HLS650E (CreateRootObjects) Unable to create root-level object of type 'objectKind'

PROBLEM:

The root-level object type objectKind could not be created.

CAUSE:

This error occurs when an srTool user tries to create any kind of root-level object other
than credentials. Other than credentials, all other root-level objects cannot be created.

SOLUTION:

Except for credentials, do not try to create any other root-level objects.
222 srTool Reference Guide

High-Level Client Interface Messages
Message Code Message and Description

HLS652I HLS652I (CRMSDBEventRedirector) ENL event eventCount: About to handle event of
class eventClass, subclass eventSubClass, type eventType

CAUSE:

This message means that the event redirector has received an ENL event of eventClass,
eventSubClass and eventType. The eventCount shows the total number of events received
by the redirector since it was started. This message will appear in the
“Trace_HLSOB...” log file if the debugLevel configuration parameter of the redirector
object is set to 3 (the maximum).

HLS653W HLS653W (CRMSDBEventRedirector) ENL event eventCount: Event not handled due to
invalid event type

PROBLEM:

The event redirector received an ENL event that had an event type that was not
expected.

CAUSE:

This warning should not occur during normal operation of srTool or srConsole.

SOLUTION:

If the warning persists, contact Technical Support.

HLS654E HLS654E (CRMSDBEventRedirector) ENL event eventCount: Event handler returning
failure – reason

PROBLEM:

A failure of some sort occurred in the event redirector’s event handler for the event
whose sequence number is eventCount.

CAUSE:

The failure is due to the given reason. This message may be followed by one or more
additional messages that can help diagnose the problem.

SOLUTION:

If the problem persists, contact Technical Support.

HLS656I HLS656I (CRMSDBEventRedirector) ENL event eventCount: Enqueued successfully

CAUSE:

This message means that the event redirector has successfully enqueued the ENL
event whose sequence number is eventCount (which is the total number of events
received by the redirector since it was started). This message will appear in the
“Trace_HLSOB...” log file if the debugLevel configuration parameter of the redirector
object is set to 3 (the maximum).
Appendix A, Messages and Troubleshooting 223

High-Level Client Interface Messages
Message Code Message and Description

HLS656E HLS656E (CRMSDBEventRedirector) ENL event eventCount: Failed to enqueue – reason

PROBLEM:

Because of the given reason, the event redirector’s event handler was not able to
enqueue the ENL event whose sequence number is eventCount (which is the total
number of events received by the redirector since it was started).

CAUSE:

The failure is due to the given reason, which, in most cases is caused by insufficient
memory resources. This message may be followed by one or more additional messages
that can help diagnose the problem.

SOLUTION:

If the problem persists, contact Technical Support.

HLS657S HLS657S (CRMSDBEventRedirector) Unable to acquire name of RMSDB event
publisher

PROBLEM:

The event redirector was not able to get the name of the Replication Management
Server, which prevented the redirector from starting.

CAUSE:

The name of the Replication Management Server (RMS) was unknown at the time the
event redirector was asked to start.

SOLUTION:

Check to ensure that the RMS is running and connected to the network. If the problem
persists, contact Technical Support.

HLS658S HLS658S (CRMSDBEventRedirector) Thread::resume failed

PROBLEM:

The event redirector could not resume its thread function..

CAUSE:

This is probably due to a lack of resources available to srTool or the console.

SOLUTION:

Check to ensure that there are sufficient memory, thread and handle resources
available on the local host machine. If the problem persists, contact Technical Support.

HLS659I HLS659I (CNotifier) Distributing notification 'notification' to subscriberCount subscribers

CAUSE:

This message means that the event redirector, a kind of notifier, is about to distribute
the notification to a number (subscriberCount) of subscribers. This message will appear
in the “Trace_HLSOB...” log file if the debugLevel configuration parameter of the
redirector object is set to 1 or higher.
224 srTool Reference Guide

High-Level Client Interface Messages
Message Code Message and Description

HLS660W HLS660W (CNotifier) Subscriber subscriberInstance update notification reported
problem for 'notification'— resultCode

PROBLEM:

The notifier’s subscriberInstance received the notification but returned the given
resultCode.

CAUSE:

This warning message indicates that the subscriber had a minor problem to report.
This message may be followed by one or more messages that can help diagnose the
underlying problem.

SOLUTION:

If the problem persists, contact Technical Support.

HLS660E HLS660E (CNotifier) Subscriber subscriberInstance update notification failed for
'notification'—reason

PROBLEM:

The notifier’s subscriberInstance failed while receiving the notification because of the
given reason.

CAUSE:

This message may be followed by one or more messages that can help diagnose the
underlying problem.

SOLUTION:

If the problem persists, contact Technical Support.

HLS661I HLS661I (objectKind Cache) FillObjectCache: Using packed enumeration protocol

CAUSE:

This message means that the cache containing objects of type objectKind is starting and
is about to be filled using the packed enumeration protocol. This message will appear
in the “Trace_HLSOB...” log file if the debugLevel configuration parameter of the
cache is set to 2 or higher.

HLS662E HLS662E (objectKind Cache) FillObjectCache: Failed – reason

PROBLEM:

The cache containing objects of type objectKind could not be filled due to the given
reason.

CAUSE:

This message may be followed by one or more messages that can help diagnose the
underlying problem.

SOLUTION:

If the problem persists, contact Technical Support.
Appendix A, Messages and Troubleshooting 225

High-Level Client Interface Messages
Message Code Message and Description

HLS663W HLS663W (object) InternalSyncFromPropValueMap: Unexpected property propertyName
(propertyID) received, value = dataValue

PROBLEM:

The property named propertyName (whose ordinal value is propertyID) was being set to
the given dataValue and the property was not already in the object’s property cache.
This is not expected behavior, but is not fatal. The property is not added to the object’s
property cache. This message will appear in the “Trace_HLSOB...” log file if the
debugLevel configuration parameter of the object is set to 1 or higher.

CAUSE:

This problem should not occur during normal operation of srTool or srConsole.

SOLUTION:

If the problem persists, contact Technical Support.

HLS664I HLS664I (RMSDBObject) InternalMergeTransactions: Moved uncommitted changed
property propertyName (propertyID) for object from transaction sourceTransactionID to
destTransactionID

CAUSE:

This message means that the changed but not-yet-committed property named
propertyName (whose ordinal value is propertyID) of the given object was successfully
transferred from the transaction whose globally unique identifier is
sourceTransactionID to the transaction destTransactionID. This message will appear in
the “Trace_HLSOB...” log file if the debugLevel configuration parameter of the object is
set to 2 or higher.

HLS666I HLS666I (objectKind Cache) MakeNewCacheEntry succeeded for transaction
transactionID: object

CAUSE:

The cache containing objects of type objectKind has successfully added the given object
under the transaction whose globally unique identifier is transactionID. This message
will appear in the “Trace_HLSOB...” log file if the debugLevel configuration
parameter of the cache is set to 3 (the maximum).
226 srTool Reference Guide

High-Level Client Interface Messages
Message Code Message and Description

HLS666E HLS666E (objectKind Cache) MakeNewCacheEntry failed for transaction transactionID:
object|propertyList -- reason

PROBLEM:

The cache containing objects of type objectKind failed while, under the transaction
having the globally unique identifier of transactionID, trying to add the given object or
add the object that it created from the given propertyList due to the given reason. This
message will appear in the “Trace_HLSOB...” log file if the debugLevel configuration
parameter of the object is set to 1 or higher.

CAUSE:

This problem should not occur during normal operation of srTool or srConsole. If it
occurs, it is most likely due to a lack of memory resources on the host machine.

SOLUTION:

If the problem persists, contact Technical Support.

HLS667E HLS667E (objectKind Cache) LookupObject: objectKind object objectID not found

PROBLEM:

The cache containing objects of type objectKind was asked to find an object whose ID
property (a globally unique identifier) is objectID and there was no such object with
that ID in the cache.

CAUSE:

The most common way for this problem to occur is when an srTool user tries to start,
stop or cancel a job that has no pairs. For example,

add job with name = "X", type = OneToOne;

start job "X"

Job control operations are directed to the job’s JCD server. In this example, the job has
a “null” JCD, which causes the server cache to respond with this error.

SOLUTION:

Be sure that a job has at least one pair before trying to start, stop or cancel it.
Appendix A, Messages and Troubleshooting 227

High-Level Client Interface Messages
Message Code Message and Description

HLS668E HLS668E job has no JCD (job control delegate) server -- perhaps it has no pairs

PROBLEM:

The Job Control Delegate server for the given job object was requested, but the globally
unique identifier of the JCD server was
{00000000-0000-0000-0000-000000000000}.

CAUSE:

The most common way for this problem to occur is when an srTool user tries to start,
stop or cancel a job that has no pairs. For example,

add job with name = "X", type = OneToOne;

start job "X"

Job control operations are directed to the job’s JCD server. In this example, the job has
a “null” JCD, which causes the server cache to respond with this error.

SOLUTION:

Be sure that a job has at least one pair before trying to start, stop or cancel it.

HLS669E HLS669E (CCSJacket) Failure in dynamic_cast: Client connection object ptr not of type
'class'

PROBLEM:

The client connection object having the instance pointer ptr could not be dynamically
cast to a pointer to the given class.

CAUSE:

This problem should not occur during normal operation of srTool or srConsole.

SOLUTION:

If the problem persists, contact Technical Support.

HLS670E HLS670E (CRXIterator) Update failure, possible dropped live update: object=object,
what=updateType, propIDs=propertyIDs, iteratorInfo -- resultCode

PROBLEM:

An object iterator was being notified about the addition, deletion or change (specified
by updateType) of the given object.which can cause the console to lose information and
cause its list views to become out-of-date.

CAUSE:

This problem should not occur during normal operation of srTool or srConsole.

SOLUTION:

If the problem persists, contact Technical Support.
228 srTool Reference Guide

High-Level Client Interface Messages
Message Code Message and Description

HLS671E HLS671E (UnlockControllingObject) Unlock failed for object using lock token lockID –
reason

PROBLEM:

The object was being unlocked from exclusive write access under the lock with the
globally unique identifier lockID when the unlock operation failed due to the given
reason.

CAUSE:

This problem is usually caused by network connectivity problems between the host
machine and the Replication Management Server (RMS) while editing a job or any of
the objects it contains.

SOLUTION:

Be sure the network connection between the local host machine and the RMS is
reliable. If the problem persists, contact Technical Support.

HLS672E HLS672E (CRXIterator) iteratorInfo update queue overflowed at updateCount updates

PROBLEM:

The update queue of the object iterator having the given iteratorInfo overflowed when
the number of updates in the queue reached the updateCount value.

CAUSE:

This problem is caused by an iterator that was opened with a live updater attached to
it, and live updates from the iterator have been suspended, and the iterator has been
receiving thousands of add/change/delete updates since the suspension began. This
can happen in srTool by monitoring an active set of objects, pausing the monitor and
then walking away from the local host, leaving srTool running. Given enough system
activity, the iterator that backs the monitor will eventually overflow.

SOLUTION:

Be sure that any paused monitors get resumed or stopped before they overflow. See
“monitor command” on page 112.
Appendix A, Messages and Troubleshooting 229

High-Level Client Interface Messages
Message Code Message and Description

HLS673E HLS673E (CRXIterator) iteratorInfo update queue overflowed at updateCount updates -�
missedCount update(s) missed

PROBLEM:

The update queue of the object iterator having the given iteratorInfo overflowed when
the number of updates in the queue reached the updateCount value. The number of
updates that have been missed since overflow occurred is missedCount.

CAUSE:

This message is usually seen in srTool when executing the monitor –resume
command when the monitor being resumed had overflowed. This message follows the
playback of the recorded updates.

SOLUTION:

Be sure that any paused monitors get resumed or stopped before they overflow. See
“monitor command” on page 112.

HLS674E HLS674E (CRXIterator) Open: 'objectKind' iterator being opened with 'specObjectKind'
object specification

PROBLEM:

An iterator that iterates over objects of type objectKind was being opened with an object
specification that results in objects of type specObjectKind. The two object kinds are not
the same.

CAUSE:

This problem should not happen during normal operation of srTool or srConsole.

SOLUTION:

It the problem persists, contact Technical Support.

HLS675I HLS675I (CCSJacket) Retrying RPC to server serverName using credential 'credential' on
RxBaseClient clientID

CAUSE:

A Remote Procedure Call to the server named serverName using the client object
having the given clientID failed previously with an “access denied” error and is being
retried with the given credential. This message will always appear in the
“Trace_HLSOB...” log file.
230 srTool Reference Guide

High-Level Client Interface Messages
Message Code Message and Description

HLS676E HLS676E (CCSJacket) Unable to set authorization information on RxBaseClient clientID
– reason

PROBLEM:

A Remote Procedure Call to the server managed by the client object having the given
clientID failed previously with an “access denied” error and was being retried with
another credential. The client communications object failed while being set with the
new authentication info.

CAUSE:

This problem should not happen during normal operation of srTool or srConsole. It
may be an “out of resource” issue.

SOLUTION:

It the problem persists, contact Technical Support.

HLS677E HLS677E (CCSJacket) Unable to connect to server serverName using RxBaseClient
clientID

PROBLEM:

A Remote Procedure Call to the server named serverName that is managed by the client
object having the given clientID failed previously with an “access denied” error and
had been retried with all other available credentials to no avail.

CAUSE:

The access rights of the user running srTool or the console are insufficient to access the
given server and there are no other stored credentials that permit access to that server.

SOLUTION:

Be sure the user running the console or srTool has sufficient access rights to the server,
or has stored credentials that will permit access to the server.

HLS678E HLS678E (CCSJacket) Unable to open local credential cache – reason

PROBLEM:

A Remote Procedure Call to a server failed previously with an “access denied” error
and was about to be retried with other available credentials, but the local host
machine’s credential repository could not be opened.

CAUSE:

This problem should not happen during normal use of the console or srTool. This
message may be followed by one or more additional messages that may help diagnose
the underlying problem.

SOLUTION:

If the problem persists, contact Technical Support.
Appendix A, Messages and Troubleshooting 231

High-Level Client Interface Messages
Message Code Message and Description

HLS679E HLS679E (CRMSDBEventRedirector) Failure while copying queued notifications --
continuing distribution of count notification(s) – reason

PROBLEM:

A failure occurred while copying count notifications just prior to distributing them to
subscribers due to the given reason. The notifications that were successfully copied will
be distributed.

CAUSE:

This problem should not happen during normal use of the console or srTool and may
be due to a lack of available memory resources on the local host machine. This
message may be followed by one or more additional messages that may help diagnose
the underlying problem.

SOLUTION:

If the problem persists, contact Technical Support.

HLS680E HLS680E (CreateOrSetProperty) The job nameOrDescription (actualLength characters long)
exceeds maximumLength characters in length

PROBLEM:

During the Create or SetProperty operation, the name or description property of a job was
being set to a string value whose actualLength exceeded the maximum allowable length
of maximumLength characters.

CAUSE:

This error is typically seen in srTool, where it’s very easy to overflow the string
property of an object. For example, the command description = MakeString
("abc", 1000) for first job will produce this error.

SOLUTION:

Be sure that the string value being assigned to an object’s property is not too large.
Heed the length limit displayed in this message.

HLS682E HLS682E (SetProperty) Dynamic replication is not allowed for job -- it's either using
merge replication, or its dynamic journaling is disabled

PROBLEM:

The new value for the IsRealTime property of the given job was not allowed because
the job’s TargetReplicaType property was set to “Merge,” or its NoDynamicJournal
property was “true” – or both.

CAUSE:

This error is typically seen in srTool, where it is easy to attempt to set conflicting job
configuration settings.

SOLUTION:

Be sure that the job’s configuration property settings do not conflict. See the section
“Selecting Replication Options” in the Replication Exec Administrator’s Guide for a
description of these settings.
232 srTool Reference Guide

High-Level Client Interface Messages
Message Code Message and Description

HLS683E HLS683E (SetProperty) Dynamic replication is not allowed for jobs using merge
replication

PROBLEM:

The new value of “Merge” for the TargetReplicaType property of a job being edited
was not allowed because the job’s IsRealTime property was set to “true.”

CAUSE:

This error is typically seen in srTool, where it is easy to attempt to set conflicting job
configuration settings.

SOLUTION:

Be sure that the job’s configuration property settings do not conflict. See the section
“Selecting Replication Options” in the Replication Exec Administrator’s Guide for a
description of these settings.

HLS684E HLS684E (SetProperty) Disabling dynamic journaling is not allowed for jobs that do
dynamic replication

PROBLEM:

Setting a new value for the NoDynamicJournal property of a job being edited was not
allowed because the job’s IsRealTime property was set to “true.”

CAUSE:

This error is typically seen in srTool, where it’s easy to attempt to set conflicting job
configuration settings.

SOLUTION:

Be sure that the job’s configuration property settings do not conflict. See the section
“Selecting Replication Options” in the Replication Exec Administrator’s Guide for a
description of these settings.

HLS685E HLS685E (SetProperty) The schedule mask specified is the wrong type (actualDataType)
or the wrong length (actualLength) -- expected expectedDataType of length expectedLength

PROBLEM:

Setting a new value for the Schedule property of a job being edited was not allowed
because the actualDataType differed from the expectedDataType or the actualLength of the
data value differed from the expectedLength.

CAUSE:

This error is typically seen in srTool, where it is relatively easy to assign bad values to
certain properties of replication system objects.

SOLUTION:

Be sure that the data value being assigned to the job’s Schedule property is of the
correct type (byteArray) and has the proper size. Heed the expected data type and
lengths displayed in this message.
Appendix A, Messages and Troubleshooting 233

High-Level Client Interface Messages
Message Code Message and Description

HLS686I HLS686I (objectKind Cache) Cache state at TransactionCollectChanges: cacheDump

CAUSE:

The cache containing objects of type objectKind is about to report all uncommitted data
for a particular transaction. A dump of the cache contents immediately follows this
message. This message will appear in the “Trace_HLSOB...” log file if the debugLevel
configuration parameter of the cache is set to 3 (the maximum).

HLS687E HLS687E (LockControllingObject) object cannot be locked for exclusive access

PROBLEM:

A request to lock the controlling object of the given object for exclusive write access
could not be done.

CAUSE:

The object had no owning object. This problem should never happen during normal
use of srTool or srConsole.

SOLUTION:

If the problem persists, contact Technical Support.

HLS688E HLS688E (module) Unable to set property 'propertyName' of 'object' to 'dataValue' -- access
type (accessType) is not 'Mutable'

PROBLEM:

The property named propertyName of the given object could not be set to the new
dataValue because the access type of the property was something other than
“Mutable.”

CAUSE:

The access type of the given property was something other than Mutable. The most
common cause of this problem is using srTool to change the value of a Constant or
Read-Only property of an object. For example, the srTool command set type =
OneToMany for job "Foo" will fail with this error.

SOLUTION:

Be sure to use the set command to change just those properties of objects that are
Mutable.
234 srTool Reference Guide

High-Level Client Interface Messages
Message Code Message and Description

HLS689E HLS689E (CRXEditableObject) object is not locked for editing

PROBLEM:

The given object was not locked for exclusive write access when it should have been.

CAUSE:

This error should not happen during normal operation of srTool or the console. It
happens if an editable object was not first edited (via BeginEdit), but it was asked to
change one of its Mutable properties, or it was asked to save (via CommitChanges) or
discard (via DiscardChanges) any changes made to it.

SOLUTION:

If the problem persists, contact Technical Support.

HLS690E HLS690E (CRXEditableObject) object is already locked for editing

PROBLEM:

The given object was asked to be locked for exclusive write access when it was already
locked.

CAUSE:

This error should not happen during normal operation of srTool or the console. It
happens if an editable object was first edited (via BeginEdit), and it was asked again to
be edited (via BeginEdit).

SOLUTION:

If the problem persists, contact Technical Support.

HLS691E HLS691E (methodName) Illegal path specification 'pathSpec' -- empty or blank

PROBLEM:

The given path specification pathSpec was empty (blank), which is not allowed.

CAUSE:

This error is most common in srTool. For example, the srTool command add
pathRule to job "Foo" with sourceServer = "S1", path = "" will
produce this error.

SOLUTION:

Be sure that the string values assigned to properties that expect path specifications are
not empty.
Appendix A, Messages and Troubleshooting 235

High-Level Client Interface Messages
Message Code Message and Description

HLS692E HLS692E (CRXRMSDBObject) object is already being edited under transaction
transactionID

PROBLEM:

The given object was asked to be edited when it was discovered that it was already
being edited under the auspices of the transaction having the globally unique
identifier of transactionID.

CAUSE:

This error should not happen during normal operation of srTool or the console. It
happens if an editable object was first edited (via BeginEdit), and it was asked again to
be edited (via BeginEdit).

SOLUTION:

If the problem persists, contact Technical Support.

HLS693E HLS693E (CRXRMSDBObject) object is not being edited -- no transaction

PROBLEM:

The given RMS database-backed object was asked to EndEdit, CommitChanges or
DiscardChanges, and it was discovered that it did not have an associated transaction.

CAUSE:

This error should not happen during normal operation of srTool or the console.

SOLUTION:

If the problem persists, contact Technical Support.

HLS694I HLS694I (method) Property 'propertyName' of object set to dataValue under transaction
transactionID

CAUSE:

The value of the property named propertyName in the property cache of the given object
was patched to the new dataValue under the auspices of the transaction having the
globally unique identifier transactionID. This message will appear in the
“Trace_HLSOB...” log file if the debugLevel configuration parameter of the cache is set
to 3 (the maximum).

HLS695I HLS695I (CRMSDBEventRedirector::AugmentAtomic) Update ID updateID, event
number eventNumber, notificationKind: status

CAUSE:

This message reports the status (“added okay” or “update not found”) for the update
having the globally unique identifier updateID and the given eventNumber and
notificationKind.
236 srTool Reference Guide

High-Level Client Interface Messages
Message Code Message and Description

HLS696I HLS696I (CRMSDBEventRedirector::EndAtomic) Update ID updateID: whatHappened

CAUSE:

This message reports whatHappened (“Enqueue failed” or “GetAtomicUpdate failed”)
for the update having the globally unique identifier updateID.

HLS697E HLS697E (ObjectPtrList::Remove) Failure removing object from list of count object(s)

PROBLEM:

A list of count objects was asked to remove the given object, but that object wasn’t in the
list.

CAUSE:

This error should not happen during normal operation of srTool or the console.

SOLUTION:

If the problem persists, contact Technical Support.

HLS698I HLS698I (objectKind Cache) object removed from uncommitted list (itemCount items)
under transaction transactionID

CAUSE:

The given object (under the transaction having the globally unique identifier
transactionID) was removed from the uncommitted list of the cache containing objects
of type objectKind. The object was added, the “add” was never committed, and then it
was deleted, thus resulting in this message. This message will appear in the
“Trace_HLSOB...” log file if the debugLevel configuration parameter of the cache is set
to 3 (the maximum).

HLS699I HLS699I (objectKind Cache) object remains in uncommitted list (itemCount items, this:
uncommittedEntry), now deleted under transaction transactionID

CAUSE:

The given deleted object (under the transaction having the globally unique identifier
transactionID) was left in the uncommitted list of the cache containing objects of type
objectKind. This message will appear in the “Trace_HLSOB...” log file if the debugLevel
configuration parameter of the cache is set to 3 (the maximum).

HLS700I HLS700I (objectKind Cache) object added to uncommitted list (itemCount items) as deleted
under transaction transactionID

CAUSE:

The given deleted object (under the transaction having the globally unique identifier
transactionID) was added to the uncommitted list of the cache containing objects of
type objectKind. This message will appear in the “Trace_HLSOB...” log file if the
debugLevel configuration parameter of the cache is set to 3 (the maximum).
Appendix A, Messages and Troubleshooting 237

High-Level Client Interface Messages
Message Code Message and Description

HLS701I HLS701I (objectKind Cache) object removed from main cache, itemCount items remain

CAUSE:

The given deleted object was removed from the cache containing objects of type
objectKind, leaving itemCount items in the cache. This message will appear in the
“Trace_HLSOB...” log file if the debugLevel configuration parameter of the cache is set
to 3 (the maximum).

HLS702I HLS702I class::method object...

or…

HLS702I objectKind status

CAUSE:

The first form of this message is a simple trace log entry, indicating that the method of
the class was called for the given object. The second form of this message is a trace log
for an iterator for objects of type objectKind, and indicates its status (for example,
“iterator opening”). This message will appear in the “Trace_HLSOB...” log file if the
debugLevel configuration parameter of the object or objectKind iterator is set to 3 (the
maximum).

HLS703E HLS703E class::method failed for object -- reason

or…

HLS703E objectKind operation -- reason

PROBLEM:

The first form of the message indicates that the method of the class failed for the given
object due to the given reason. The second form of the message indicates that the
objectKind iterator failed while performing the given operation (for example, “iterator
opening”) due to the given reason. This message will appear in the “Trace_HLSOB...”
log file if the debugLevel configuration parameter of the object or objectKind iterator is
set to 1 or higher.

CAUSE:

The cause of the failure should be described by the given reason.

SOLUTION:

If the problem persists, contact Technical Support.
238 srTool Reference Guide

High-Level Client Interface Messages
Message Code Message and Description

HLS704I HLS704I class::method object succeeded

or…

HLS704I objectKind operation

CAUSE:

The first form of this message is a simple trace log entry, indicating that the method of
the class was completed successfully for the given object. The second form of this
message is a trace log for an iterator for objects of type objectKind, and indicates that its
operation (for example, “iterator opening”) completed successfully. This message will
appear in the “Trace_HLSOB...” log file if the debugLevel configuration parameter of
the object or objectKind iterator is set to 3 (the maximum).

HLS705I HLS705I (objectKind Cache) Uncommitted addOrDelete of object transaction changed from
sourceTransactionID to destTransactionID

CAUSE:

The add/change/delete items of the source transaction whose globally unique
identifier is sourceTransactionID are being transferred into the destination transaction
destTransactionID. In the cache that stores objects of type objectKind, the addOrDelete
information for the given object was successfully transferred to the new (destination)
transaction. This message will appear in the “Trace_HLSOB...” log file if the
debugLevel configuration parameter of the cache is set to 3 (the maximum).

HLS706I HLS706I (iterator) Update: Applying object to filter 'expression' evaluated to 'dataValue'

CAUSE:

The given iterator was notified of an update involving the given object, and the given
filter expression was applied to the object resulting in the given dataValue. (A non-zero
dataValue indicates the object matches the filter expression.) This message will appear in
the “Trace_HLSOB...” log file if the debugLevel configuration parameter of the cache
is set to 3 (the maximum).

HLS707I HLS707I (iterator) Update: UPDATETYPE_Changed for object changed to
UPDATETYPE_AddedOrDeleted

CAUSE:

The given iterator was notified that one or more properties of the given object changed,
and because the iterator was using a filter, the “change” notification was effectively
translated into an “added” or “deleted” notification. This message will appear in the
“Trace_HLSOB...” log file if the debugLevel configuration parameter of the cache is set
to 2 or higher.

HLS708I HLS708I (iterator) Update: propertyNames properties of object changed

CAUSE:

The given iterator was notified that the properties having the given propertyNames of
the given object changed. This message will appear in the “Trace_HLSOB...” log file if
the debugLevel configuration parameter of the cache is set to 3 (the maximum).
Appendix A, Messages and Troubleshooting 239

High-Level Client Interface Messages
Message Code Message and Description

HLS709E HLS709E (objectKind cache) Unable to set configuration parameter 'paramName' to new
value 'newDataValue'

PROBLEM:

An attempt was made to change the value of a parameter with the name paramName of
the cache that contains objects of type objectKind, but the cache did not recognize the
parameter with that name.

CAUSE:

This message is usually accompanied by the SHR256W message. The cache did not
have a configurable parameter with that name. This is commonly due to misspelling
the parameter name.

SOLUTION:

Be sure to spell the parameter name correctly, and that the cache has a parameter with
that name.

HLS710E HLS710E (objectKind Cache) Unable to get configuration parameter 'paramName'

PROBLEM:

An attempt was made to retrieve the value of a parameter with the name paramName
of the cache that contains objects of type objectKind, but the cache did not recognize the
parameter with that name.

CAUSE:

This message is usually accompanied by the SHR257E message. The cache did not
have a configurable parameter with that name. This is commonly due to misspelling
the parameter name.

SOLUTION:

Be sure to spell the parameter name correctly, and that the cache has a parameter with
that name.

HLS711E HLS711E (SetProperty of destRule) TargetServer: There is no pair in job having a target
server that matches serverID (dataValue)

PROBLEM:

An attempt was made to change the value of the TargetServer property of the
destination rule object destRuleObject with the new value dataValue (the name of the
proposed new target server), but there was no replication pair in the job that
ultimately owns the destination rule that had a matching target server.

CAUSE:

This is commonly due to changing the target server of a destination rule without first
ensuring that there is a pair in the owning job with the same target server.

SOLUTION:

Be sure to verify that there is a pair in the owning job that has the same target server as
the one being set in the destination rule.
240 srTool Reference Guide

High-Level Client Interface Messages
Message Code Message and Description

HLS712E Built-in function functionName usage: description

PROBLEM:

The built-in function named functionName was called with the wrong number of
arguments, or one or more of the arguments were of the wrong data type. The proper
usage of the function is shown in the given description.

CAUSE:

The built-in function named functionName was called with the wrong number of
arguments, or one or more of the arguments were of the wrong data type. As an aid to
the user, a description of the function's purpose and its arguments is included in the text
of the message.

SOLUTION:

Be sure the built-in function is called with the proper number of arguments, and that
each argument is passed the proper type of data.

HLS713E moduleName: Expected 'expectedType' -- instead got 'actualType'

PROBLEM:

The moduleName, an implementation of a built-in function, was passed an argument
that had the actualType data type instead of the expectedType.

CAUSE:

This message usually results from calling a built-in function with an argument that has
the wrong kind of data.

SOLUTION:

Be sure that all built-in functions are called with the proper data passed to each
argument of the functions.

HLS714E (moduleName) Error in path specification pathSpec

PROBLEM:

In moduleName, the given pathSpec was found to be invalid.

CAUSE:

This message usually results from calling a built-in function with an argument that
was expected to be a string that contains a path specification, and the path was invalid.

SOLUTION:

Be sure that any path specifications passed to built-in functions are correctly specified
for the platform and file system being used.
Appendix A, Messages and Troubleshooting 241

High-Level Client Interface Messages
Message Code Message and Description

HLS715E Built-in function functionName: Illegal data type 'actualType' specified -- use 'expectedType'
instead

PROBLEM:

In the built-in function named functionName, the actualType data type that was
specified as an argument to that function was invalid. The function expected the
expectedType data type.

CAUSE:

This message usually results when the built-in function ReadFile is called with the
optional third argument set to something other than byteArray (aka blob) or string (or
their equivalent integral ordinal values).

SOLUTION:

Be sure that the arguments passed to built-in functions contain the proper data types
and values.

HLS716E (InternalCheckForValidPathVolume) Path 'pathSpec' is not absolute (i.e., has no root
volume or drive)

PROBLEM:

In the software module InternalCheckForValidPathVolume, the given pathSpec that was
specified was not rooted to a drive letter (i.e., it was a relative path instead of an
absolute one).

CAUSE:

This message results when a relative path is used as the path property of a new
pathRule being created. For example, this srTool command would produce this error:

add rule to job "Foo" with sourceServer = "Src", path =
"folderA\\folderB"

SOLUTION:

Be sure that the path property of new pathRules is always a rooted (absolute) path.
For example:

add rule to job "Foo" with sourceServer = "Src", path =
"D:\\folderA\\folderB"
242 srTool Reference Guide

srTool Messages
srTool Messages

Message Code Message and Description

SRT301A SRT301A (Shell shellID) Ready

CAUSE:

srTool emits this message to the standard output stream when the command shell
with the given shellID is still running, and its command queue is empty, and it’s
reading commands from the standard input stream. (Note that the text of this prompt
string can be changed by setting the PromptString shell variable.)

SOLUTION:

Type in one or more valid srTool commands, separating them with semicolons, then
press the Enter (or Return) key.

SRT302I SRT302I (Shell shellID) Command shell exited with error, details

CAUSE:

Appearing in the diagnostic output stream, the command shell with the given shellID
terminated with a result code of something other than RXRESULT_Success. If the
shell’s verbose variable was set true, additional information describing the error
should follow the details.

SRT303I SRT303I Welcome to srTool version version
Copyright (C) 1999 - 2004 by VERITAS Software, Inc. All rights reserved worldwide.

CAUSE:

This is the welcome banner message that gets displayed to the diagnostic output
stream only if srTool was started with the –v (verbose) option and the –nobanner
option was not specified. srTool’s version number is displayed in the message.

SRT304E SRT304E Client interface initialization failed, reason

PROBLEM:

When srTool tried to initialize the client interface, it failed for the given reason. The
reason may include a number of additional messages that follow this one in the
diagnostic output stream.

CAUSE:

The cause can be discerned from any additional messages that follow this one in the
diagnostic output stream. The most common cause of this error is the local machine
that’s hosting srTool cannot communicate with the RMS machine.

SOLUTION:

Be sure that the local machine that’s hosting srTool has a working network
connection. Also verify that the RMS machine is powered on, connected to the
network, and its replication services have been started.
Appendix A, Messages and Troubleshooting 243

srTool Messages
Message Code Message and Description

SRT305E SRT305I module: Failure in deinitialization – reason

CAUSE:

Appearing in the diagnostic output stream, the deinitialization of module failed for the
given reason. If the –v (verbose) option was specified on the command line that
invoked srTool, additional messages may follow this one to further describe the
reason for the failure.

SRT306E SRT306E Command line processing failed, reason

PROBLEM:

Command line argument processing failed for the given reason.

CAUSE:

The command line arguments passed to srTool most likely did not follow srTool’s
syntax rules. Perhaps an invalid option was specified, or two options that are
mutually exclusive were both specified.

SOLUTION:

Be sure that the arguments passed to srTool from the Windows command line meet
the srTool command line syntax rules (see “Starting srTool” on page 23).

SRT307E SRT307E (Shell shellID) command: Invalid option 'option' specified

PROBLEM:

The command issued in the srTool command shell shellID had an invalid option, which
is shown inside the single quote marks in the message.

CAUSE:

This is typically caused by mis-spelling or mis-specifying the keyword that follows
the hyphen when specifying an option “switch” for a given command. For example,
the command list –noTabel first rms will produce this error (“noTabel”
should be spelled “noTable”).

SOLUTION:

Be sure the syntax rules for the command are followed, paying close attention to the
spelling of the keywords that are valid as options for that command.
244 srTool Reference Guide

srTool Messages
Message Code Message and Description

SRT308I SRT308I SYNTAX:

srTool [-help]

[-h[l[sob]] | -n[o[interface]]]

[-u[ser[id|name]] {userName}]

[-p[ass[word]] {clearTextPassword}]

[-d[om[ain]] {domainName}]

[-v[erbose]]

[-nofirst]

[-nobanner]

[-stay]

[{-command|-cmd} {srToolCommands}...]

CAUSE:

This message commonly appears after the SRT307E or SRT310E message. It shows, in
summary form, the syntax of the srTool command line.

SRT309E SRT309E (Shell shellID) command: Option 'keyword' already specified

PROBLEM:

An option keyword was specified more than once from the Windows command line
used to start srTool, or in the srTool command line for the given command in the
command shell shellID.

CAUSE:

If shellID is not zero and command is not “(command line)”: The command issued in the
srTool command shell shellID had an option keyword that was specified more than
once.

If shellID is zero and command is “(command line)”: The specified srTool command
line option keyword was specified more than once in the argument list obtained from
the Windows command line.

SOLUTION:

If shellID is not zero and command is not “(command line)”: Be sure to follow the
syntax rules for the given command, particularly with regard to the spelling of its
option keywords.

If shellID is zero and command is “(command line)”: Be sure that the arguments passed
to srTool from the Windows command line meet the srTool command line syntax
rules (see “Starting srTool” on page 23).
Appendix A, Messages and Troubleshooting 245

srTool Messages
Message Code Message and Description

SRT310E SRT310E Invalid command line parameter 'token'

PROBLEM:

One of the arguments used to start srTool from the Windows command line was
invalid.

CAUSE:

This message is typically caused by failing to precede an optional parameter with a
hyphen.

SOLUTION:

Be sure that the arguments passed to srTool from the Windows command line meet
the srTool command line syntax rules (see “Starting srTool” on page 23). In particular,
be sure that the keyword used for any option switches is preceded with a hyphen.

SRT311E SRT311E Missing or invalid 'keyword' parameter -- 'token'

PROBLEM:

A command line option that required parameter data did not actually have any
parameter data specified after the option keyword, or the data was of the wrong type.

CAUSE:

This message is caused by failing to follow an option parameter keyword with valid
data when it was expected. For example, srTool –d –v would cause this error because
the –d option requires a domain name after the ‘d’ keyword.

SOLUTION:

Be sure that the arguments passed to srTool from the Windows command line meet
the srTool command line syntax rules (see “Starting srTool” on page 23). In particular,
be sure that command line options that require parameter data after them actually
have valid data specified on the command line after the keyword.

SRT316E SRT316E (Shell) External command shell 'system' call failed, returned errorCode, was
passed 'commandLine'

PROBLEM:

srTool made a ‘system’ call to run an external program commandLine on the native
host machine, and received a non-zero result code errorCode from that call, indicating
that some kind of failure occurred.

CAUSE:

The cause of this message can usually be discerned from the errorCode and the
commandLine being attempted to execute.

SOLUTION:

Be sure the command to be run is a valid command on the local machine’s host
operating system, that its syntax is specified correctly, and that it is semantically
correct as well.
246 srTool Reference Guide

srTool Messages
Message Code Message and Description

SRT317I SRT317I (Shell shellID) command: No help available for 'topic'

CAUSE:

In the shell identified by shellID, while executing the given command (which should be
Help), no help was available for the given topic.

SRT318W SRT318W (Shell shellID) command: Unable to get 'module' version, resultCode

PROBLEM:

In the shell identified by shellID, while executing the given command (which should be
Show), srTool received a failure resultCode from a function that is supposed to acquire
the version information of a particular software module.

CAUSE:

This indicates a problem in the software itself.

SOLUTION:

Please notify VERITAS technical support.

SRT319E SRT319E (Shell shellID) command: Unable to create 'objectKind' object(s), resultCode

PROBLEM:

In the shell identified by shellID, while executing the given command (which should be
Create, Make or Add), srTool failed with resultCode while attempting to create one or
more objects of type objectKind.

CAUSE:

This message, if the shell variable verbose is set true, will normally be followed by
other messages that will help to explain the cause of the problem. There are several
ways that object creation can fail, including trying to add objects to another object
that cannot contain them, or omitting the initial value of a required property. For
example, the command add pair to first RMS will fail in this manner.

SOLUTION:

Be sure that the shell variable verbose is set true, and take note of the message(s) that
follow this one. Also be sure to follow the “srTool Object Hierarchy” on page 64,
which determines which objects can be added to other objects.
Appendix A, Messages and Troubleshooting 247

srTool Messages
Message Code Message and Description

SRT320E SRT320E (Shell shellID) command: Unable to lock 'object' for editing – reason

PROBLEM:

In the shell identified by shellID, while executing the given command, srTool was
unable to lock the object for editing for the reason given.

CAUSE:

This situation is typically caused by another console or srTool instance that is already
editing the object. Note that such console or srTool instances could potentially be
running on a machine anywhere on the network that encompasses the replication
neighborhood.

SOLUTION:

Determine which VRE console or srTool instance is editing the object of interest, and
close the properties dialog (for srConsole), or use the quit command (for srTool).

SRT321E SRT321E (Shell shellID) command: Unable to save and unlock 'object' – reason

PROBLEM:

In the shell identified by shellID, while executing the given command, srTool was
unable to save and unlock the object for the reason given.

CAUSE:

This message is not usually seen during normal use of srTool. To determine the cause
of this problem, be sure the shell variable verbose is set true, which will cause srTool
to emit one or more messages immediately after this one. These follow-up messages
should help in diagnosing the true cause of the problem.

SOLUTION:

Based on the messages that follow this one (assuming the shell variable verbose is set
true), correct the problem and try the command again.

SRT324I SRT324I (Shell shellID) About to execute: commandLine

CAUSE:

The shell identified by shellID is about to execute the commandLine (displayed as an
ordered sequence of tokens separated by the vertical bar character).

This message will appear in the shell’s diagnostic output stream if the shell variable
echoCommands is set true. This message will appear in the srTool log files if the shell
variable debugLevel is set to 2 or higher.

SRT325I SRT325I (Shell shellID) command: methodName: resultCode – data

CAUSE:

The shell identified by shellID, while executing the command, is about to return from
the given method with the given resultCode. The data being returned by the method is
displayed at the end of this message.

This message only appears in the srTool log files if the shell variable debugLevel is set
to 3 (the maximum level).
248 srTool Reference Guide

srTool Messages
Message Code Message and Description

SRT326E SRT326E Syntax error: command

PROBLEM:

srTool was not able to execute the command due to a syntax error detected somewhere
in the command line. The command is displayed on the line immediately beneath this
message. The offending token where the syntax error was detected is highlighted
with a sequence of caret characters (^^^^) on the line immediately below the
command line.

CAUSE:

The syntax of the command is incorrect.

SOLUTION:

Taking note of the offending token where the syntax error was detected, correct the
command such that it follows the syntax rules documented elsewhere in this manual.

SRT328E SRT328E (Shell shellID) command: Error while evaluating expression

PROBLEM:

In the shell identified by shellID, while executing the given command, an expression
failed to evaluate.

CAUSE:

There are many possible reasons for expression evaluation to fail. To determine the
cause of this problem, be sure the shell variable verbose is set true. Additional
messages will follow this one, and should shed light on the actual cause of the failure.

SOLUTION:

Based on the cause that was determined above, correct the problem and try the
command again.

SRT329E SRT329E (Shell shellID) command: Error while converting count value (dataType) to a
numeric value, reason

PROBLEM:

In the shell identified by shellID, while executing the given command, the dataType
result of an expression would not convert to an unsigned integer value that is to be
used as an object count.

CAUSE:

This is typically caused by an expression that results in a data type that cannot
convert to an unsigned integer value being used in a grouping spec’s object count, or
as the object count in the add command.

SOLUTION:

Be sure that anywhere an object count is expected that the expression used to
compute that count results in a data type that can be converted to an unsigned
integer. See “Converting Between Different Data Types” on page 33.
Appendix A, Messages and Troubleshooting 249

srTool Messages
Message Code Message and Description

SRT330E SRT330E (Shell shellID) command: Object count value must be at least 1

PROBLEM:

In the shell identified by shellID, while executing the given command, the unsigned
integer that resulted from the evaluation of an expression was zero. An object count
of zero is not permitted.

CAUSE:

An expression used in an object count of a grouping spec or the add command
resulted in zero.

SOLUTION:

Be sure the object count expression results in a value of one or more, then try the
command again.

SRT334E SRT334E (Shell shellID) command: 'syntaxElement' specified more than once

PROBLEM:

In the shell identified by shellID, while executing the given command, srTool
discovered that the given syntaxElement was specified more than once, creating an
ambiguity where one is not allowed.

CAUSE:

Usually this error occurs while parsing the add command or property assignment
lists. For example, the command add job with type = oneToOne, type =
OneToMany will produce this error.

SOLUTION:

Carefully check the command, and remove the duplicitous syntax element(s), then
retry the command again.

SRT335E SRT335E (Shell shellID) command: Unexpected token ('token') found past end of
command

PROBLEM:

In the shell identified by shellID, after successfully parsing the entire command, srTool
found the given token past the logical end of the command.

CAUSE:

This is usually due to the user inadvertently entering some characters at the end of a
valid command line. For example, the command list every rms extra will elicit
this message.

SOLUTION:

Check the syntax of the command, remove the extra (and erroneous) tokens from the
end of the command line, then retry the command again.
250 srTool Reference Guide

srTool Messages
Message Code Message and Description

SRT343E SRT343E (Shell shellID) command: 'token' is not a valid property name

PROBLEM:

In the shell identified by shellID, while executing the given command, srTool expected
to find a valid property name, but instead found the given token.

CAUSE:

This error is most commonly caused by misspelling a property name. For example,
add job with foo = 3 will produce this error.

SOLUTION:

Correct the spelling of the property to be specified, then retry the command again.

SRT345E SRT345E (Shell shellID) command: Expected 'syntaxElement' -- instead got 'token'

PROBLEM:

In the shell identified by shellID, while parsing the given command, srTool expected to
find the given syntaxElement, but instead found the given token (or nothing if the end
of the command has passed).

CAUSE:

While parsing the command, srTool expected something on the command line, but
didn’t get it. This is usually due to the user entering a command with an incorrect
syntax.

SOLUTION:

Check the syntax of the command, correct any errors, then retry the command again.

SRT348E SRT348E (Shell shellID) command: Error in path specification data

PROBLEM:

In the shell identified by shellID, while executing or parsing the given command,
srTool encountered an invalid path specification. This message may be followed by
additional information in data.

CAUSE:

This is usually due to the user entering a path whose syntax is incorrect.

SOLUTION:

Check the syntax of the path specification, correct any errors, then retry the command
again.
Appendix A, Messages and Troubleshooting 251

srTool Messages
Message Code Message and Description

SRT350E SRT350E (Shell shellID) command: Only one syntaxElement may be specified -- instead
there are count of them

PROBLEM:

In the shell identified by shellID, while executing or parsing the given command,
srTool encountered count syntaxElements, when there should have only been one
specified.

CAUSE:

This is usually due to specifying more than one property in the set command, like
this: set name, description of first job = “foo”

SOLUTION:

Be sure to specify only one syntax element where it is called for, then retry the command
again.

SRT352E SRT352E (Shell shellID) command: Error while adding or changing symbol value -�
resultCode

PROBLEM:

The shell identified by shellID, while executing or parsing the given command (which
should be the set command), was not able to add or change the value of a variable.

CAUSE:

This is usually caused by an attempt to change the value of a read-only variable,
whether it be a global variable or it belongs to one of the shell’s execution contexts.
For example, the command whenShellStarted = now() can produce this error.
In very rare cases, it can also be caused by a lack of available system memory.

SOLUTION:

Be sure that the variable being set is not marked as read-only.

SRT354E SRT354E (Shell shellID) command: Unable to obtain default object specification -�
resultCode

PROBLEM:

The shell identified by shellID, while executing or parsing the given command, was not
able to obtain the shell’s default object specification because of resultCode.

CAUSE:

This problem should never occur during normal operation of srTool.

SOLUTION:

If the problem persists, be sure that the verbose shell variable is set true, then please
contact Technical Support.
252 srTool Reference Guide

srTool Messages
Message Code Message and Description

SRT355E SRT355E (Shell shellID) command: Unable to set default object specification -- reason

PROBLEM:

The shell identified by shellID, while executing or parsing the given command, was not
able to change the shell’s default object specification due to the given reason.

CAUSE:

This problem should never occur during normal operation of srTool.

SOLUTION:

If the problem persists, be sure that the verbose shell variable is set true, capture all
messages that precede and follow this one, then please contact Technical Support.

SRT356E SRT356E (Shell shellID) command: Unable to add or set variableName -- reason

PROBLEM:

The shell identified by shellID, while executing or parsing the given command, was
not able to add or change the variable identified by variableName because of the given
reason. If variableName is shown as “parameter values”, the shell was not able to set
one or more parameter value variables.

CAUSE:

This message is usually followed by one or more additional messages that should
point to the actual cause of the problem.

SOLUTION:

Be sure that the verbose shell variable is set true, then read the additional message(s)
that follow(s) this one, then correct the indicated problem(s).

SRT356W SRT356W (Shell shellID) methodOrFunction: Unable to add or set inherited symbols --
reason

PROBLEM:

The shell identified by shellID, while executing given methodOrFunction, was not able
to add or change one or more variables inherited from its parent shell because of the
given reason.

CAUSE:

This indicates a condition similar to that reported by message SRT356E, except this
one is not fatal, thus is only a warning. This message is usually followed by one or
more additional messages that should point to the actual cause of the problem.

SOLUTION:

Be sure that the verbose shell variable is set true, then read the additional message(s)
that follow(s) this one, then correct the indicated problem(s).

SRT357I SRT357I (Shell shellID) Spawn: Shell task [taskNumber] completed

CAUSE:

This message indicates that the spawned shell with the given shellID that was running
under the given taskNumber completed normally.
Appendix A, Messages and Troubleshooting 253

srTool Messages
Message Code Message and Description

SRT358E SRT358E (Shell shellID) Shift: Shift count value must be at least 1

PROBLEM:

While the shell shellID was parsing the shift command, it came up with a shift count
of zero, which is not allowed.

CAUSE:

The expression that was specified in the shift command resulted in a value of zero.

SOLUTION:

Be sure that the expression that is used in the shift command results in a value that is
greater than or equal to one (1).

SRT359E SRT359E (Shell shellID) command: Command failed, reason

PROBLEM:

The shell shellID encountered a failure while parsing or executing the command, which
was due to reason. When this message is present, it means that all other enqueued
commands will be flushed and not executed if the shell variable continueOnError is
set to false.

CAUSE:

This message is usually caused by a semantic or other execution error (for example,
the syntax rules were correctly followed, but the command’s meaning was incorrect).
If the shell variable verbose is set to true, this message is followed by one or more
additional messages that should indicate the actual cause of the problem.

SOLUTION:

Be sure that the verbose shell variable is set true, then read the additional message(s)
that follow(s) this one, then correct the indicated problem(s).

SRT362E SRT362E (Shell shellID) command: No such function 'functionName'

PROBLEM:

While executing the command, the shell shellID encountered a failure while trying to
obtain the commands that were stored for a user-defined function that was defined
with the name functionName.

CAUSE:

This problem is usually caused by mis-typing a function name in an expression
(RXRESULT_NotFound). On extremely rare occasions, this same message can result
from srTool being operated under exceedingly low system memory conditions
(RXRESULT_Memory).

SOLUTION:

Be sure that any function(s) used in any expression(s) in the command truly exist
under the reported functionName, whether they be built-in or user-defined.
254 srTool Reference Guide

srTool Messages
Message Code Message and Description

SRT363E SRT363E (Shell shellID) command: Missing argument 'argumentName' for function
‘functionName’

PROBLEM:

While executing the command, the shell shellID discovered that the argument named
argumentName was missing in the call to the user-defined function named
functionName.

CAUSE:

This problem is caused by omitting an argument that must be passed to the named
user-defined function.

SOLUTION:

Be sure that when using any user-defined function(s) in any expression(s) in the
command, that all required function arguments are supplied in the expression(s).

SRT364W SRT364W (Shell shellID) command: Superfluous argument passed to function
‘functionName’: expression

PROBLEM:

While executing the command, the shell shellID discovered that the function argument
using expression was not needed in the call to the user-defined function named
functionName.

CAUSE:

This problem is caused by supplying an argument that was not expected by the
user-defined function.

SOLUTION:

Be sure that when using any user-defined function(s) in any expression(s) in the
command, that only the required function arguments are supplied – no more and no
less.

SRT366E SRT366E (Shell shellID) command: No corresponding 'contextKind' kind of execution
context

PROBLEM:

While executing the command, the shell shellID encountered an execution context
control command that would have been legal for a context of type contextKind.

CAUSE:

This problem is typically caused by using a break or continue statement when there
is no active loop or repeat context; or by using an else or elseIf statement when there
is no active if context.

SOLUTION:

Be sure that break or continue statements are used inside loop or repeat contexts,
and that else or elseIf statements are used inside if contexts.
Appendix A, Messages and Troubleshooting 255

srTool Messages
Message Code Message and Description

SRT367I SRT367I (Shell shellID) command: Command execution aborted

CAUSE:

This message indicates that the command that was executing in the shell shellID was
aborted, typically by a “Control-C” interrupt. When this message is displayed, it also
means that all execution contexts other than the default one are discarded, as are all
queued commands.

SRT370E SRT370E (Shell shellID) end: Command not preceded by 'loop', ‘if’, ‘function’ or 'begin'
command

PROBLEM:

The end command was executing in the shell shellID without being preceded by a
loop, if, function or begin command.

CAUSE:

This problem is typically caused by using an end statement when there is no active
execution context.

SOLUTION:

Be sure that end statements always terminate execution contexts.

SRT372E SRT372E (Shell shellID) command: Unable to convert 'originalDataType' value to
'requiredDataType'

PROBLEM:

While executing the command, the shell shellID evaluated an expression to obtain a
data value that should have been of type requiredDataType but instead ended up with
a data value of type originalDataType, and wasn’t able to convert it to the
requiredDataType.

CAUSE:

This problem usually results from the expressions that produce data values used to
determine the 1) wait time or the “until” condition in the wait command, or 2) index
values in indexing specifications. The expressions result in data values that can’t be
converted to the data types required in those two situations.

SOLUTION:

For the wait command, be sure the “until” expression can be converted to an uint64
or uint32 value, and that the “wait time” expression is convertible to a timespan. For
indexing specifications, be sure the expression results will convert to uint64 values.
See “Converting Between Different Data Types” on page 33.
256 srTool Reference Guide

srTool Messages
Message Code Message and Description

SRT373E SRT373E (Shell shellID) command: Unable to obtain 'propertyName' property from the
current object

PROBLEM:

While executing the command, the shell shellID was asked for the value of the property
of an object under consideration during the evaluation of an expression, and the
object did not have the property that was requested.

CAUSE:

This problem typically occurs when a select command is being used and a property
reference in one of the expressions refers to a property that does not exist in the
object(s) that result(s) from the specified or implied compound object specification.

SOLUTION:

Be sure that the property specification in the expression refers to a property that exists
for the kind of object that will result from the compound object specification. See
“Property Specifications” on page 55, and “select command” on page 117.

SRT375E SRT375E (Shell shellID) command: Unable to obtain 'propertyName' property from
'objectSpec' -- there are count objects from which to get it

PROBLEM:

While evaluating an expression during the execution of command, the shell shellID
was asked for the value of the property of the object that results from the query
objectSpec, and instead of one, there were count objects from which to obtain the
property value.

CAUSE:

This problem can occur anytime an expression is used that contains a property
specification that incorporates an object specification that results in no objects or more
than one object. For example, the command echo –x name of job "" will
produce this error. If two or more jobs exist, the command echo –x name of all
jobs will also produce this error. If count exceeds one, this message will be
accompanied by the SRT465I message.

SOLUTION:

Be sure that any property specifications that are used in expressions always follow
the rules as documented in “Property Specifications” on page 55.

SRT377I SRT377I (Shell shellID) command: Command execution stopped due to error

CAUSE:

An error occurred while the shell shellID was executing a prior command, and the
shell variable continueOnError was set false. Because of this, the shell has stopped
execution of all other pending commands.
Appendix A, Messages and Troubleshooting 257

srTool Messages
Message Code Message and Description

SRT378E SRT378E (Shell shellID) Macro or embedded command nesting level exceeds level

PROBLEM:

The maximum nesting level was exceeded while shell shellID was replacing macros or
embedded commands.

CAUSE:

This problem can happen if macro or embedded command nesting exceeds 32 levels
of depth.

SOLUTION:

Be sure that macro or embedded command nesting does not exceed 32 levels of
depth.

SRT378S SRT378S (Shell shellID) Nesting level exceeds level -- unable to continue

PROBLEM:

A maximum nesting level was exceeded in shell shellID.

CAUSE:

This problem can happen if an srTool script calls itself (recursively) too many times,
or if too many srTool shells have called down too many levels, or if an expression is
too complex.

SOLUTION:

Be sure that any expressions that are specified in any commands do not contain any
sub-expressions that exceed a depth of 64, and that command shells are not nested
(via the call command) to a depth that exceeds 32 levels.

SRT379I SRT379I (Shell shellID) RunShell starting at level depth

CAUSE:

The shell shellID has started reading, enqueing and executing commands at the
nesting level depth. This message will appear in the “Trace_HLSOB...” log file in the
debugLevel shell variable is set to 2 or higher.

SRT380I SRT380I (Shell shellID) RunShell exiting from level depth

CAUSE:

The shell shellID has finished executing commands at the nesting level depth. This
message will appear in the “Trace_HLSOB...” log file in the debugLevel shell variable
is set to 2 or higher.
258 srTool Reference Guide

srTool Messages
Message Code Message and Description

SRT381S SRT381S (Shell shellID) command: Unable to record command -- fatal, cannot continue

PROBLEM:

The shell shellID encountered a failure while trying to record the command.

CAUSE:

This problem can only happen under extremely tight system memory conditions and
should never happen during normal use of srTool.

SOLUTION:

Be sure that there is sufficient system memory available for use by srTool.

SRT382S SRT382S (Shell shellID) Input text line exceeds length character buffer capacity – cannot
continue

PROBLEM:

The input stream of shell shellID returned NULL from its getline method for a
condition other than end-of-file, which indicates that the line of text that was just read
exceeded the capacity of its line buffer (which is length characters).

CAUSE:

This can happen if an srTool script file is executed, called or spawned (via the exec,
call or spawn command, respectively) and the file doesn’t contain standard ASCII or
Unicode text data, or if it actually contains a run of more than 32,767 characters
without an intervening line break (which, on Windows is the carriage-return,
line-feed character pair).

SOLUTION:

Be sure that srTool only executes script files containing standard ASCII or Unicode
text data, and that the line lengths in the files are less than 32K characters.

SRT384E SRT384E (Shell shellID) wait: Failure in wait command -- reason

PROBLEM:

The wait command running in the shell shellID failed for the given reason.

CAUSE:

One or more messages should follow this one that describe what caused the failure.
Typically this is caused by the use of an “until” expression that cannot be evaluated or
whose resulting data cannot be converted into an unsigned integer value.

SOLUTION:

Be sure that the expression used in the “until” clause of the wait command will result
in a data value that can convert into an unsigned integer value.
Appendix A, Messages and Troubleshooting 259

srTool Messages
Message Code Message and Description

SRT385E SRT385E (Shell shellID) command: Error in 'sortedBy' clause -- missing 'ascending' or
'descending' keyword, or property name

PROBLEM:

While the shell shellID was parsing the ‘sortedBy’ clause used in an object
specification in command, a property name was missing, or the keywords ascending
or descending were expected but missing.

CAUSE:

This problem is caused by syntax errors in the ‘sortedBy’ clause of an object
specification.

SOLUTION:

Be sure to follow the syntax rules of ‘sortedBy’ clauses of the object specification(s)
being used in command. See “SortedBy Clause” on page 71.

SRT387E SRT387E (Shell shellID) command: Unable to obtain module list -- reason

PROBLEM:

The shell shellID was executing command (which should only be the configure
command) and was not able to obtain a list of configurable software modules for the
given reason.

CAUSE:

This problem should not happen during normal operation of srTool. This message
may be followed by one or more other messages that may give a clue as to the exact
origin of the failure.

SOLUTION:

If this problem recurs, note any other messages that follow this one, then please
contact Technical Support.

SRT388I SRT388I (Shell shellID) configure: Registered modules:

CAUSE:

A list of registered software modules is about to follow this message in the shell
shellID’s standard output stream. This message is a consequence of having the verbose
shell variable set to true and using the configure command without any other
arguments or parameters.

SRT389W SRT389W (Shell shellID) command: There are no registered modules, or none were
specified

CAUSE:

The shell shellID was executing command (which should be the configure command)
and noticed that there were no registered software modules, and none were specified
as arguments to the command.
260 srTool Reference Guide

srTool Messages
Message Code Message and Description

SRT390I SRT390I (Shell shellID) delete: functionOrGlobal name deleted

CAUSE:

The shell shellID successfully deleted the user-defined function or global variable
named name. The functionOrGlobal part of the message will indicate either “function”
or “global variable.” This message will be seen only if the verbose variable of shell
shellID is set to true.

SRT393E SRT393E (Shell shellID) configure: Unable to obtain information about module
'moduleName' -- reason

PROBLEM:

The shell shellID was executing the configure command and was not able to obtain
information about the software module named moduleName because of reason.

CAUSE:

If the reason is RXRESULT_Invalid, one of the module names specified in the command
wasn’t the name of an object kind. If the reason is RXRESULT_NotFound, one of the
module names specified in the command was invalid, probably misspelled.

SOLUTION:

Be sure to use only module names from this list: FileReplicationJob, ReplicationPair,
Script, PathRule, SelectionRule, DestinationRule, Server and EventRedirector.

SRT395E SRT395E (Shell shellID) use: Unable to set the new default object specification

PROBLEM:

The shell shellID was executing the use command and was not able to change its
default object specification.

CAUSE:

This error should not occur during normal use of srTool.

SOLUTION:

Please contact Technical Support.

SRT396W SRT396W (Shell shellID) quit: Shell exiting with count unterminated execution
contexts: contextList

PROBLEM:

The shell shellID was about to exit and discovered that it still had count active
execution contexts. The contextList shows the ones that were still active.

CAUSE:

This error can occur if the quit command is issued inside of a begin, if/else/elseIf or
loop context.

SOLUTION:

Be sure to end all active contexts (using the end command) prior to issuing the quit
command. To determine the contexts that are active, use the show contexts
command.
Appendix A, Messages and Troubleshooting 261

srTool Messages
Message Code Message and Description

SRT398E SRT398E (Shell shellID) command: 'identifierName' is undefined

PROBLEM:

The function or variable whose name is identifierName was undefined in shell
shellID. The command was currently executing when this was discovered.

CAUSE:

This error most commonly occurs in commands containing one or more expressions,
at least one of which was using an undefined variable, or that had a function call, but
a function with that name was never defined.

SOLUTION:

Be sure that expressions use only variables or functions that have already been
defined.

SRT399E SRT399E (Shell shellID) command: 'tty' or 'con' file specification not allowed with this
command

PROBLEM:

The command being executed in shell shellID did not allow the use of a ‘tty’ or ‘con’ file
specification.

CAUSE:

This error is reported whenever the ‘tty’ or ‘con’ file specification is used with the
spawn or exec command. Such a file specification is only valid with the call
command.

SOLUTION:

Be sure that the ‘tty’ or ‘con’ file specification is only used with the call command.

SRT400I SRT400I (Shell shellID) command: Context contextName started, expression=condition

CAUSE:

Appearing only in the HLSOB or srConsole logs when the shell shellID’s debugLevel
shell variable is set to 2 or higher, this message means that a new execution context
with the name contextName was started in the shell shellID by the command. The new
context had the given condition expression attached to it.

SRT401I SRT401I (Shell shellID) command: Context contextName changed, command=tokens,
expression=condition

CAUSE:

Appearing only in the HLSOB or srConsole logs when the shell shellID’s debugLevel
shell variable is set to 2 or higher, this message means that the existing execution
context with the name contextName was changed in the shell shellID by the command.
The command causing the context change had the given tokens and condition
expression associated with it.
262 srTool Reference Guide

srTool Messages
Message Code Message and Description

SRT402I SRT402I (Shell shellID) command: Context contextName ended

CAUSE:

Appearing only in the HLSOB or srConsole logs when the shell shellID’s debugLevel
shell variable is set to 2 or higher, this message means that the existing execution
context with the name contextName was ended in the shell shellID by the command.

SRT404I SRT404I (Shell shellID) command: Context contextName -- SetExecute is now trueOrFalse

CAUSE:

Appearing only in the HLSOB or srConsole logs when the shell shellID’s debugLevel
shell variable is set to 2 or higher, this message means that the existing execution
context with the name contextName had its “SetExecute” state set to trueOrFalse in the
shell shellID by the command.

SRT405I SRT405I (Shell shellID) Prepended command tokens, count queued

CAUSE:

Appearing only in the HLSOB or srConsole logs when the shell shellID’s debugLevel
shell variable is set to 3 (the maximum), this message means that the shell shellID
prepended the listed tokens to its command queue, bringing the number of commands
on the queue up to count.

SRT406I SRT406I (Shell shellID) Appended command tokens, count queued

CAUSE:

Appearing only in the HLSOB or srConsole logs when the shell shellID’s debugLevel
shell variable is set to 3 (the maximum), this message means that the shell shellID
appended the listed tokens to its command queue, bringing the number of commands
on the queue up to count.

SRT407I SRT407I (Shell shellID) Removed command tokens, count remain

CAUSE:

Appearing only in the HLSOB or srConsole logs when the shell shellID’s debugLevel
shell variable is set to 3 (the maximum), this message means that the shell shellID
removed the listed tokens from the end of its command queue, bringing the number of
remaining commands on the queue down to count.

SRT408I SRT408I (Shell shellID) Command queue cleared, count command(s) were discarded

CAUSE:

Appearing only in the HLSOB or srConsole logs when the shell shellID’s debugLevel
shell variable is set to 3 (the maximum), this message means that the shell shellID’s
command queue was cleared, discarding count commands in the process.
Appendix A, Messages and Troubleshooting 263

srTool Messages
Message Code Message and Description

SRT409I SRT409I (Shell shellID) command: Context contextName not yet ended,
commands=recordedCommands, vars=variables

CAUSE:

Appearing only in the HLSOB or srConsole logs when the shell shellID’s debugLevel
shell variable is set to 2 or higher, this message means that the state of the existing
loop context named contextName was changed in the shell shellID by the (end)
command. The context’s recorded commands are listed, as are its currently defined
variables.

SRT410I SRT410I (Shell shellID) command: Context contextName recorded command tokens

CAUSE:

Appearing only in the HLSOB or srConsole logs when the shell shellID’s debugLevel
shell variable is set to 2 or higher, this message means that the existing context named
contextName in the shell shellID recorded the command’s tokens.

SRT411I SRT411I (Shell shellID) command: Context contextName command recording now
trueOrFalse

CAUSE:

Appearing only in the HLSOB or srConsole logs when the shell shellID’s debugLevel
shell variable is set to 2 or higher, this message means that the command-recording
state of the existing context named contextName in the shell shellID is now set to
trueOrFalse.

SRT412E SRT412E (Shell shellID) loop: Illegal loop variable 'name' – reason

PROBLEM:

The variable named name being defined in the loop command being executed in shell
shellID is illegal because of the given reason.

CAUSE:

This error is reported whenever a loop variable being defined in a “loop for”
command matches the name of a property or is already defined to be global in scope
or is read-only.

SOLUTION:

Be sure to not use loop variables that have the same name as any object properties or
existing global variables or existing variables that are read-only.
264 srTool Reference Guide

srTool Messages
Message Code Message and Description

SRT413W SRT413W (Shell shellID) delete: Unable to delete functionOrGlobal 'name' -- reason

PROBLEM:

The user-defined function or global variable named name could not be deleted by the
shell shellID because of the given reason.

CAUSE:

If the shell shellID’s verbose variable is set to true, there may be other messages that
follow this one that can indicate the underlying reason for the deletion failure. The
reason RXRESULT_NotFound indicates the specified function or global does not exist
and could have been misspelled. The reason RXRESULT_IllegalOperation typically
means the specified function name matched the name of a built-in function.

SOLUTION:

Be sure that the names of the functions or variables to be deleted are for existing
user-defined functions or globals, respectively.

SRT414I SRT414I (Shell shellID) command: Calling function name, args=argumentList,
tokens=cmdTokens

CAUSE:

Appearing only in the HLSOB or srConsole logs when the shell shellID’s debugLevel
shell variable is set to 3 (the maximum), this message means that the user-defined
function with the given name is about to be called with the given arguments shown in
the argumentList. The command tokens stored for the function are shown in the
cmdTokens.

SRT 418E SRT418E (Shell shellID) spawn: Unable to spawn task -- reason

PROBLEM:

The shell shellID was not able to create a new task for the given reason.

CAUSE:

Generally, this problem should never occur during normal operation of srTool. If it
does, it most likely would be due to a resource issue (for example, lack of available
system memory). If the shell shellID’s verbose variable is set to true, there may be
other messages that follow this one that can indicate the underlying reason for the
failure.

SOLUTION:

Be sure to set the shell variable verbose to true and try the command again. If the
problem recurs, note any additional messages that follow this one and please contact
Technical Support.
Appendix A, Messages and Troubleshooting 265

srTool Messages
Message Code Message and Description

SRT419E SRT419E (Shell shellID) command: Missing option -- expected suggestion

PROBLEM:

While parsing command, the shell shellID discovered an option keyword was missing,
when it was expecting those in the suggestion.

CAUSE:

This problem is commonly caused by omitting the option keyword after the hyphen
that normally precedes it. For example, list – will produce this error. Note that if
shellID is zero (and command is “srTool”), the option keyword was missing in the
command line used to start srTool from the Windows NT command prompt.

SOLUTION:

Be sure to follow the syntax rules for the command, specifying a valid option keyword
immediately after the hyphen.

SRT420E SRT420E (Shell shellID) command: Option 'optionSwitch' illegal for situation

PROBLEM:

While parsing command, the shell shellID discovered that the option optionSwitch was
illegal in the given situation.

CAUSE:

This problem can be caused by one of two things: using the –target option for a job
control command (start, stop, pause, resume or cancel) other than cancel, which is
not allowed; or using any of the –src, -test or –x options with the –from option in the
xml command, which also is not allowed.

SOLUTION:

Be sure to follow the syntax and semantic rules that are documented for the command,
recognizing that some command options cannot be used in combination with certain
others.

SRT422E SRT422E (Shell shellID) xml: Unable to process 'tagName' tag

PROBLEM:

In shell shellID was executing the xml command, trying to “reanimate” replication
system objects from XML code, and didn’t know how to create an object from the
XML code that had the tag named tagName.

CAUSE:

This version of srTool only knows how to reanimate objects of type ObjectData from
XML.

SOLUTION:

There is no solution for this problem.
266 srTool Reference Guide

srTool Messages
Message Code Message and Description

SRT423E SRT423E Built-in function 'functionName' failed: 'reason'

PROBLEM:

The built-in function named functionName failed for the given reason.

CAUSE:

The reason given in the message should state why the failure occurred (for example,
disk full).

SOLUTION:

Based on the cause of the failure, correct the problem as indicated then try again.

SRT424I SRT424I (Shell shellID) use: Default object specification changed from 'oldObjectSpec' to
'newObjectSpec'

CAUSE:

This message means that the default object specification of shell shellID was changed
from the oldObjectSpec to the newObjectSpec. This message only appears if the shell’s
verbose variable is set to true.

SRT425E SRT425E (Shell shellID) command: Command option 'keyword' valid only for
'commandName' command

PROBLEM:

While parsing command, the shell shellID encountered an option keyword that is legal
only for the command(s) commandName, which isn’t the current situation.

CAUSE:

This problem is caused by the mis-use of certain options in one of the shell invocation
commands (exec, call or spawn). For example, using the –list option with call or
exec is not allowed.

SOLUTION:

Be sure to follow the syntax and semantic rules that are documented for the command,
recognizing that some command options can only be used with certain commands.
Appendix A, Messages and Troubleshooting 267

srTool Messages
Message Code Message and Description

SRT426E SRT426E (Shell shellID) command: Conflicting command options: options

PROBLEM:

While parsing command, the shell shellID detected one or more options that were in
conflict with each other.

CAUSE:

This problem is caused by specifying one or more mutually exclusive options, which
is commonly found in the shell invocation commands (exec, call or spawn) or, if the
shellID is zero (and command is “srTool”), this same problem was detected in the
srTool command line itself, as issued from the Windows NT command prompt. For
example, using both the –list and -c options together in the spawn command will
produce this error.

SOLUTION:

Be sure to follow the syntax and semantic rules that are documented for the command,
recognizing that some command options can only be used with certain commands.

SRT427I SRT427I (Shell shellID) command: About to resolve objectSpec

CAUSE:

Appearing only in the HLSOB or srConsole logs when the shell shellID’s debugLevel
shell variable is set to 3 (the maximum), this message means that the simple or
compound object specification objectSpec is about to be resolved into objects or object
iterators that can be used to iterate over the resulting objects.

SRT428I SRT428I (Shell shellID) command: Resolved objectSpec into count object(s) -- resultCode

CAUSE:

Appearing only in the HLSOB or srConsole logs when the shell shellID’s debugLevel
shell variable is set to 3 (the maximum), this message means that the simple or
compound object specification objectSpec was resolved into count objects while
executing command. If the resolution was successful, the resultCode will be
RXRESULT_Success; otherwise, it will be another code designating the type of
failure that occurred.

SRT429I SRT429I (Shell shellID) command: GetQualifiedObjects final results -- count object(s)
listOfObjects

CAUSE:

Appearing only in the HLSOB or srConsole logs when the shell shellID’s debugLevel
shell variable is set to 3 (the maximum), this message means that a simple object
specification was successfully resolved into count objects while executing command.
The objects are subsequently listed in the log immediately after this message.
268 srTool Reference Guide

srTool Messages
Message Code Message and Description

SRT431W SRT431W (Shell shellID) command: Query resulted in no objects

CAUSE:

Appearing only in the HLSOB or srConsole logs when the shell shellID’s debugLevel
shell variable is set to 2 or higher, this message means that a request was made to
resolve an empty compound object specification into iterators or objects. A message
of this type should be considered an unusual event in the log.

SRT433E SRT433E (Shell shellID) delete: Unable to delete object -- failure in methodName, reason

PROBLEM:

The shell shellID was unable to delete the given object due to the given reason. The
failure was detected in the method methodName, which should be one of the
following: “Open”, “DeleteAll” or “Delete”.

CAUSE:

There are many potential reasons that an object (or set of objects) cannot be deleted.
To help determine the cause, this message is always followed by one or more
additional messages that should pinpoint the reason for the failure. These other
messages can always be seen if the shell variable verbose is set to true.

SOLUTION:

Using the other messages that accompany this one, note the reasons for the failure. If
the reason is something that can be corrected (for example, a job being edited in a
console), correct the problem, then try the delete command again.

SRT434I SRT434I (Shell shellID) delete: object deleted

CAUSE:

This message means that the specified object was successfully deleted by the delete
command executing in shell shellID. This message only appears in the standard
output stream if the shell’s verbose variable is set to true.

SRT435I SRT435I (Shell shellID) delete: count object(s) deleted

CAUSE:

This message means that count object(s) was (were) successfully deleted by the delete
command executing in shell shellID. This message only appears in the standard
output stream if the shell’s verbose variable is set to false.
Appendix A, Messages and Troubleshooting 269

srTool Messages
Message Code Message and Description

SRT437E SRT437E (Shell shellID) set: Unable to set property in object objectNameOrID -- object is
not editable

PROBLEM:

The shell shellID was unable to change the value of a property in the given
objectNameOrID because the object is not editable.

CAUSE:

Many objects in the srTool object hierarchy are intrinsically not editable, and thus
cannot have any of their property values changed (for example, file objects).

SOLUTION:

Be sure that only editable objects are specified in the object specification used in the
set command.

SRT438E SRT438E (Shell shellID) set: Unable to set property propertyName in object
objectNameOrID – reason

PROBLEM:

The shell shellID was unable to change the value of the property named propertyName
in the given objectNameOrID.

CAUSE:

There are many possible reasons why a certain property of a particular object cannot
be changed to a certain value. Some properties are Constant or ReadOnly. Others can
only be changed to a limited set of data values. Still others can only be changed to a
particular value if some other condition is true. This message is commonly followed
by one or more other messages that describe the particular reasons for the failure.

SOLUTION:

Note the reasons for the failure from the messages that follow this one, then correct
those conditions that can be corrected, and then try the set command again.

SRT439I SRT439I (Shell shellID) set: count object(s) set

CAUSE:

This message means that count object(s) had one or more properties that were
successfully changed by the set command executing in shell shellID. This message
only appears in the standard output stream if the shell’s verbose variable is set to
false.

SRT440I SRT440I (Shell shellID) set: propertyNames property(s) of object objectNameOrID set

CAUSE:

This message means that the specified object had the listed propertyNames
successfully changed by the set command executing in the shell shellID. This message
only appears in the standard output stream if the shell’s verbose variable is set to true.
270 srTool Reference Guide

srTool Messages
Message Code Message and Description

SRT441E SRT441E Built-in function functionName usage: description

CAUSE:

This message means that the built-in function named functionName was called with
the wrong number (or data types) of arguments. As an aid to the user, a description of
the function’s purpose and its arguments is included in the text of the message.

SRT442E SRT442E (Shell shellID) command: Unable to operation object nameOrID – reason

PROBLEM:

The shell shellID, while executing command, was unable to perform operation on the
object with the given nameOrID.

CAUSE:

This problem is commonly seen when using job control commands (start, stop,
cancel, pause or resume), enable or disable, or the promote or demote commands.
This message is commonly followed by one or more other messages that describe the
particular reasons for the failure. As an example, attempting to promote a
selectionRule that is already at the top will produce this error.

SOLUTION:

Note the reasons for the failure from the messages that follow this one, setting the
shell variable verbose to true, if necessary to see the additional messages, then correct
those conditions that can be corrected, and then try the command again.

SRT443I SRT443I (Shell shellID) command: nameIDOrCount object(s) successfully commanded to
operation

CAUSE:

This message means that the specified object was successfully commanded to do
operation, or the given number of objects were successfully commanded to do the
same, while executing the command in the shell shellID. If the shell’s verbose variable
is set to true, this message will appear once in the standard output stream for each
object that is successfully commanded; otherwise, it will appear once to show the
total number of objects that were successfully commanded.
Appendix A, Messages and Troubleshooting 271

srTool Messages
Message Code Message and Description

SRT444E SRT444E (Shell shellID) command: Cannot perform 'operation' operation on 'nameOrID'
object -- expected object of type 'objectKind'

PROBLEM:

The shell shellID, while executing command, was unable to perform the given operation
on the object identified by nameOrID because the object was not of type objectKind.

CAUSE:

This problem is commonly seen when using the start, stop, cancel, pause or resume
commands, which expect fileReplicationJob objects, or the enable or disable
commands, which expect server objects, or the promote or demote commands, which
expect selectionRule objects. For example, the command promote first job
will produce this error.

SOLUTION:

Check the documentation for the specific command and be sure that the command verb
can be applied to the kinds of objects that will result from the object specification used
in the command.

SRT445I SRT445I (Shell shellID) Object added: object

CAUSE:

This message means that monitoring was taking place in the shell shellID and the
specified object met the filter criteria for one of the shell’s active monitors, and is
giving notice that the object was successfully added. This message appears in the
shell’s standard output stream.

SRT446I SRT446I (Shell shellID) Object changed: object (propertyChanges)

CAUSE:

This message means that monitoring was taking place in the shell shellID and the
specified object met the filter criteria for one of the shell’s active monitors, and is
giving notice that one or more properties of the object changed. The new values of the
changed properties are shown in the propertyChanges. This message appears in the
shell’s standard output stream.

SRT447I SRT447I (Shell shellID) Object deleted: object

CAUSE:

This message means that monitoring was taking place in the shell shellID and the
specified object met the filter criteria for one of the shell’s active monitors, and is
giving notice that the object was successfully deleted. This message appears in the
shell’s standard output stream.
272 srTool Reference Guide

srTool Messages
Message Code Message and Description

SRT449I SRT449I (Shell shellID) All elements removed -- list reset

CAUSE:

This message means that monitoring was taking place in the shell shellID and the
object list associated with one of the active monitors was reset. All preceding
messages associated with that monitor should be disregarded as stale. This message
appears in the shell’s standard output stream.

SRT450W SRT450W (Shell shellID) flush: objectKind objects have no cache that can be flushed

PROBLEM:

The shell shellID, while executing the flush command, was unable to flush the
internal cache for the given objectKind.

CAUSE:

This problem is caused by specifying an objectKind that has no internal cache. The
only objectKinds that have an internal cache are fileReplicationJobs, replicationPairs,
scripts, pathRules, selectionRules, destinationRules and servers. For example, the
command flush alert would produce this message.

SOLUTION:

Note that this error is only a warning; thus, the caches for other kinds of objects that
were also specified will be flushed. If one or more objectKind(s) are to be specified in
the flush command, be sure to specify just those listed above.

SRT451I SRT451I (Shell shellID) ReadCommandLineTokens returned resultCode, quantity
token(s): tokenList

CAUSE:

This message means that the given quantity of tokens in the tokenList were being
returned to the shell shellID for further processing. This message only appears in the
srTool log files if the shell variable debugLevel is set to 3 (the maximum level).

SRT452I SRT452I (Shell shellID) ReadCommandLine returned resultCode, length character(s):
commandLine

CAUSE:

This message means that the given commandLine, which contains length characters,
was being returned to the shell shellID for further processing. This message only
appears in the srTool log files if the shell variable debugLevel is set to 3 (the
maximum level).
Appendix A, Messages and Troubleshooting 273

srTool Messages
Message Code Message and Description

SRT453E SRT453E (Shell shellID) Macro substitution failure, variable 'identifierName' does not
exist

PROBLEM:

The shell shellID could not perform a macro substitution that was found for a variable
named identifierName that did not exist in any of the current execution contexts or the
global one.

CAUSE:

This problem is usually caused by misspelling the variable name used in a macro
replacement in the command line.

SOLUTION:

Correct the spelling of the macro, taking care to ensure that the variable name it uses
really does exist, then try the command again.

SRT454E SRT454E (Shell shellID) Macro substitution problem, variable 'identifierName', unable to
tokenize replacement text replacementText, reasonCode

PROBLEM:

The shell shellID could not perform a macro substitution for the variable named
identifierName because replacing the macro with the replacementText in the command
line failed because of the given reasonCode.

CAUSE:

This message most likely indicates a shortage of memory, and should not occur
during normal operation of srTool.

SOLUTION:

If the problem recurs even with sufficient system memory, please contact Technical
Support.

SRT455I SRT455I (Shell shellID) monitor: Attempting to operation monitor number for objectSpec

CAUSE:

This message means that the shell shellID was trying to start, stop, pause or resume
the monitor with the given number for the given objectSpec. If the shell’s verbose
variable is set to true, this message will appear once in the standard output stream for
each object specification for which a monitor is being started, stopped, paused or
resumed.

SRT456I SRT456I (Shell shellID) monitor: Monitor number operation for objectSpec

CAUSE:

This message means that the shell shellID had successfully started, stopped, paused
or resumed the monitor with the given number for the given objectSpec. If the shell’s
verbose variable is set to true, this message will appear once in the standard output
stream for each object specification for which a monitor successfully started, stopped,
paused or resumed. It usually appears immediately after the SRT455I message.
274 srTool Reference Guide

srTool Messages
Message Code Message and Description

SRT457E SRT457E (Shell shellID) monitor: Duplicate monitor, same as [number] objectSpec

PROBLEM:

The shell shellID could not add a new monitor for the given objectSpec because it
already had a monitor (with the given number) for that exact same objectSpec.

CAUSE:

The shell shellID is already monitoring that same object specification.

SOLUTION:

Be sure that the object specification being used in the monitor command is unique
amongst all other currently active monitors.

SRT458E SRT458E Built-in function functionName: Illegal data type 'actual' specified -- use
'desired' instead

PROBLEM:

The built-in function functionName was called with an argument of type actual when it
was expecting an argument of type desired.

CAUSE:

The most common source of this error is the incorrect use of the built-in function
ReadFile, which, if called with a second parameter, it must be equal to the ordinal
value of the srTool data types byteArray (blob) or string.

SOLUTION:

Be sure that the arguments passed to built-in functions are what the functions expect.
See the documentation for the Built-in Functions under “Functions” on page 57.

SRT459W SRT459W (Shell shellID) Execution failed in embedded command `command` -- reason

PROBLEM:

The shell shellID could not substitute the output of the command into the command
line because of the given reason.

CAUSE:

This message can be followed by one or more additional messages and most likely
indicates a shortage of memory, and should not occur during normal operation of
srTool.

SOLUTION:

If the problem recurs even with sufficient system memory, please contact Technical
Support.

SRT460I SRT460I (Shell shellID) Macro substitution(s) completed – commandLine

CAUSE:

This message means that the given commandLine resulted from macro replacement
being performed by the shell shellID. This message only appears in the srTool log files
if the shell variable debugLevel is set to 2 or higher.
Appendix A, Messages and Troubleshooting 275

srTool Messages
Message Code Message and Description

SRT461I SRT461I (Shell shellID) Embedded command substitution(s) completed -- commandLine

CAUSE:

This message means that the given commandLine resulted from embedded command
replacement being performed by the shell shellID. This message only appears in the
srTool log files if the shell variable debugLevel is set to 2 or higher.

SRT462E SRT462E (Shell shellID) command: Unable to define variable 'name' -- a property
(propertyID) already uses that name

PROBLEM:

While executing command in shell shellID, the identifier name could not be defined
because it matches the name of an object property (whose ordinal value is propertyID).

CAUSE:

There are two ways to produce this error. One is by creating a new global variable
with that name; the other is to specify a loop variable with that name. Either way, if the
name matches the name of a property – any property of any object – this error will
result.

SOLUTION:

Be sure that any variable names to be defined are unique names that do not collide
with any of the existing object property names. See “srTool Object Reference” on
page 135, or use the command get name of all properties of all
objectkinds.

SRT463I SRT463I (Shell shellID) command: Resolved objectSpec into count iterator(s) -- resultCode

CAUSE:

This message means that the shell shellID, while executing command, resolved the
given objectSpec into count iterators. If successful, the resultCode will be
RXRESULT_Success. This message only appears in the srTool log files if the shell
variable debugLevel is set to 3 (the maximum setting).

SRT464I SRT464I (Shell shellID) delete: count object(s) deleted using 'objectSpec'

CAUSE:

This message means that the shell shellID, while executing the delete command, was
able to successfully delete count objects at once using a single operation, rather than
deleting each object individually. This message only appears in the standard output
stream if the shell’s verbose variable is set true.
276 srTool Reference Guide

srTool Messages
Message Code Message and Description

SRT465I SRT465I To get a single result from propertyName, use 'minimum', 'average', 'median',
'maximum' or 'total' keyword before propertyName

CAUSE:

This message appears with the SRT375E message whenever an expression is used
that contains a property specification that incorporates an object specification that
yields more than one object. This message is a reminder that a single data value can
be obtained from multiple objects if one of the special keywords is used in the
property specification. See “Property Specifications” on page 55.

SRT466W SRT466W (Shell shellID) shift: Desired parameter shift desiredCount computed from
'expression' exceeded existing parameter count of paramCount and was truncated

PROBLEM:

While executing the shift command in shell shellID, the desired shiftCount exceeded
the paramCount and was truncated to that value.

CAUSE:

This is not a serious error, thus the “W” (warning) designation. It only means that the
desired parameter shift exceeded the number of parameters, so the actual shift to be
performed by the shift command will match the number of parameters.

SOLUTION:

To avoid this warning, be sure that the shift count expression results in a value that is
less than or equal to the existing parameter count.

SRT469S SRT469S Local ENL service has stopped or failed -- srTool cannot continue

PROBLEM:

srTool has been notified that the local ENL service was commanded to stop or it was
terminated due to some failure condition.

CAUSE:

This is a serious error, thus the “S” (serious) designation. This can be caused by an
administrator stopping the ENL service on the local host machine while one or more
srTool instances are running in the command prompt windows on the same machine.

SOLUTION:

To avoid this problem, be sure that all Replication Exec console and srTool instances
have been quit from before stopping the local ENL service.
Appendix A, Messages and Troubleshooting 277

srTool Messages
Message Code Message and Description

SRT470E SRT470E (Shell shellID) use: Default object specification originates with non-root-level
object (objectKind)

PROBLEM:

While executing the use command in shell shellID, it was discovered that the desired
default object specification was rooted in an objectKind that is not a root-level object. A
default object specification must be rooted at a root-level object.

CAUSE:

This is caused by specifying a non-root-level object at the “root” of the compound
object specification used in the use command. For example the command use
first job would produce this error because job objects are not root-level objects.
(Job objects are obtained from rms objects.)

SOLUTION:

Be sure that the “root” of the compound object specification used in the use command
refers to a root-level object. The left-most objects listed in the “srTool Object
Hierarchy” on page 64 are the root-level objects.

SRT471I SRT471I (Shell shellID) command: Parent execution context changed from 'childContext'
to 'parentContext'

CAUSE:

This message means that the current execution context of shell shellID was changed
from the childContext, which is being destroyed, to the parentContext, while executing
command. This message only appears in the srTool log files if the shell variable
debugLevel is set to 3 (the maximum setting).

SRT472I SRT472I (Shell shellID) command: Context change 'DoChange' not handled in context
'thisContext' -- passing on to context 'parentContext'

CAUSE:

This message means that the command (typically else, elseIf, break or continue),
executing in the shell shellID, was trying to alter the characteristics of an execution
context in the context stack. ThisContext refused to handle the alteration, and was
passing the request on to the parentContext. This message only appears in the srTool
log files if the shell variable debugLevel is set to 3 (the maximum setting).
278 srTool Reference Guide

srTool Messages
Message Code Message and Description

SRT473E SRT473E (Shell shellID) command: 'successorCommand' expected after
'predecessorCommand'

PROBLEM:

The shell shellID, having already seen the predecessorCommand, requires the
successorCommand to come after it, but instead it found command, which is illegal.

CAUSE:

This is usually caused by having more than one else clause in an if command context,
or an elseif (or else if) clause after an else clause in an if command context. For
example, the following if command context will produce this error:

if true

echo true

else

echo false

else

echo Huh?

end if

SOLUTION:

Check to make sure that no other else, elseif (or else if) clauses follow an else clause
in an if command context.

SRT474E SRT474E (Shell shellID) command: Unable to obtain 'objectSpec' because no objectKind
resulted from 'lastObjectSpec'

PROBLEM:

The shell shellID, while executing command, wasn’t able to obtain any objects for the
given objectSpec because there were no objects of type objectKind that resulted from the
lastObjectSpec. In other words, there were no parent objects from which subordinate
objects could be obtained.

CAUSE:

This is a common problem that can happen when composing compound object
specifications to make inqueries of the replication system. For example, if the “first
job” of the RMS had only one pathRule, then the following command would produce
this error:

list all selRules of rule 5 of first job

srTool would not be able to obtain any selectionRule objects, because no pathRule
objects would result from “rule 5 of first job” – there is no “rule 5”.

SOLUTION:

Be sure that intermediate queries will produce objects from which subsequent queries
can be made.
Appendix A, Messages and Troubleshooting 279

srTool Messages
280 srTool Reference Guide

Index
Symbols

! command, see shell command 120
command, see comment command 83
& command, see spawn command 125
? command, see help command 104
@ command, see call command 78

A
Accessed object property 140, 146, 148, 175,

177, 178, 183
add command 73
administrative console (VRE 3.1)

help features 9
launching srTool 9

alert object 135
AlertWhenConsistent object properties 142
as operator constant 40

B
begin command 76
binary operators

description 54
expressions 50

blob
constant 39
converting from a string 34
data type 32

break command 77
built-in

functions 57
variables 43

C
call command 78
cancel command 80
changing commands, summary of 27
check command 81
classification, operators 54
client interface error messages 206
ClusterType property values 48
command parameter 125
command parameters, see parameters
commandResult variable 43
commands 73

!, see shell command

#, see comment command

&, see spawn command

?, see help command

@, see call command

add 73

begin 76

break 77

call 78

cancel 80

changes with VRE 3.1 5

check 81

commands

rem, see comment command
remark, see comment command

comment 83
config, see configure command
configure 83
continue 85
count 86
create, see add command
del, see delete command
delete 87
demote 88
disable 89
dump 90
echo 92
else 93
elseif 94
embedded 63
enable 95
end 96
exec 97
exit, see quit command
flush 100
function 100
get, see list command
global 103
help 104
if 105
list 106
loop 108
Index 281

ls, see list command

make, see add command

mon, see monitor command

monitor 112

new, see add command

promote 114

q, see quit command

quit 115

repeat, see loop command

select 117

set 118

shell 120

shift 121

show 122

spawn 124

start 114, 116, 127

stop 128

summaries of

changing 27

creating 27

deleting 27

flow control 28

job-specific 27

object discovery 27

other commands 28

selection rule-specific 28

server-specific 27

use 129

wait 131

xml 133

comment command 83

componentName parameter 84

compound object specifications

description 72

example 72

compoundObjectSpec parameter 74, 81, 86, 87,

88, 89, 91, 95, 107, 113, 114, 115, 116,

117, 119, 128, 129, 130, 133

config command, see cofigure
command 84

configParamList parameter 84

configure command 83

constants

as operator 40

blob 39

float 40

string 38

uint32 40

uint64 40

uniqueID 39

constants (literals) 38

changes with VRE 3.1 2

constParameter parameter 79, 99, 126

continue command 85

continueOnError variable 43

converting data types 33

count command 86

countExpression parameter 121

create command, see add command 73

creating commands 27

credential object 137

D

data types

blob 32

changes with VRE 3.1 2

conversions

string into a blob 34

string into a DateTime 34

string into a dateTime 35

string into a timeSpan 36

string into a uniqueID 34

converting between 33

dateTime 32

description 32

float 32

int32 32

int64 32

string 32

timeSpan 32

uint32 32

uint64 32

uniqueID 32

dateTime

data type 32

debugLevel variable 43

del command, see delete command 87

delete command 87

deleting commands, summary of 27

demote command 88

Description object property 136

destinationRule object 138

diagnostic output redirection 30

disable command 89

documentation, most current 1

dump command 90

E

echo command 92

282 srTool Reference Guide

echoCommands variable 43
eference 23
else command 93
elseif command 94
embedded commands

changes with VRE 3.1 5
description 63
example 63

enable command 95
Enabled object property 143
end command 96
error messages 187

client interface 206
shared class 188
srTool 243

escape sequences, string constants 38
examples

Alert objects, working with 136
binary operators of expressions 51
changing variables 42
commands

add 74
begin 76
break 77
call 79
cancel 81
check 82
comment 83
configure 84
continue 85
count 86
delete 87
demote 89
disable 89
dump 91
echo 92
else 94
elseif 95
enable 96
end 97
exec 99
flush 100
function 102
global 103
help 105
if 106
list 107
loop 111
monitor 113

promote 115
quit 116
select 117
set 119
shell 120
shift 121
show 124
spawn 126
start 128
stop 129
use 130
wait 132
xml 134

compound object specifications 72

converting a string into a dateTime 35

converting string into a timeSpan 36

converting string into a uniqueID 34

creating variables 42

Credential objects, working with 138

deleting variables 42

DestinationRule objects, working

with 139

embedded commands 63

factor 52

File objects, working with 141

FileReplicationJob objects, working

with 145

Folder objects, working with 147

Item objects, working with 149

License objects, working with 151

LogEntry objects, working with 152

macros 63

ObjectKind objects, working with 153

output redirection 31

PathRule objects, working with 155

Property objects, working with 157

ReplicationPair objects, working

with 160

RMS objects, working with 163

Script objects, working with 165

SelectionRule objects, working with 167

Server objects, working with 171

sortedBy clause 71

specifications

grouping 69
indexing 70
object 68
property 56

SubFile objects, working with 176
Index 283

SubFolder objects, working with 178

SubItem objects, working with 180

terms 52

uniqueID constant 40

variables 41

Volume objects, working with 184

whose clause 72

exec command 97
execution contexts, variables 41
execution control structures

changes with VRE 3.1 4
exit command, see quit command 115
expression parameter 79, 92, 94, 99, 103, 106,

117, 119, 120, 125, 132, 133
expressionList parameter 110
expressions

binary operators 50
changes with VRE 3.1 4
description 49, 50

F
factor, description 52
fieldDelimiter variable 44
file(s) object 140
fileOrFolderObjectSpec parameter 82
filePathString parameter 78, 98, 125
float

constant 40
data type 32

flow control commands 28
flush command 100
folder(s) object 146
function command 100
functionName parameter 87, 101
functions 57

built-in, descriptions 57

changes with VRE 3.1 5

creating 62

deleting 62

discovery 57

G
get command, see list command 107
global command 103
global variables 41, 46

ClusterType property values 48
JobState property values 46
JobType property values 47
MappingMethod property values 48
TargetReplicaType property values 47

grouping specification
description 68
examples 69

H
heirarchy, objects 64
help command 9
help command 104

I
identifierName parameter 103
if command 105
incrExpression parameter 110
indexing specification

description 70
example 70

indexingSpec parameter 113
inexactShorthand variable 44
int32

data type 32
int64

data type 32
item(s) object 148

J
jobObjectSpec parameter 82
job-specific commands, summary of 27
JobState property value 46
JobType property values 47

L
launching srTool 9
license object 149
list command 106
literals 38
LogBlob object property 152
logEntries object 151
loop command 108
ls command, see list command 107

M
macros

changes with VRE 3.1 5
description 63
example 63

make command, see add command 73
MappingMethod property values 48
messages, error 187
mon command, see monitor command 112
monitor command 112
284 srTool Reference Guide

N
nestingLevel variable 44
new command, see add command 73

O
object properties

Access 156
Accessed 140, 146, 148, 175, 177, 178, 183
Address 161, 169, 172, 180
AlertCount 142
AlertWhenConsistent 142
AssocObjID 135
AssocObjName 135
AssocObjType 135
AutoStale 156
BuildVersionString 161, 169, 172, 180
BytesFree 183
Capacity 183
ClusterID 142
ClusterName 142
ClusterType 142
CommandLine 164
ControllerID 139, 150, 152, 154, 158, 164,
166
Created 140, 146, 148, 175, 177, 178, 184
CurrentExecutingOperation 143
CurrentFileName 158
CurrentFileSize 158
DataIsConsistentOnTarget 158
DataSource 156
DataType 156
DefaultTargetPath 169, 172, 181
DefaultValue 156
Depth 140, 146, 148, 175, 177, 179, 184
Description 136, 143, 156
Domain 161, 169, 172, 181
Enabled 143
FeaturePackVersion 161, 169, 172, 181
FileSystem 184
FullPath 140, 146, 148, 175, 177, 179, 184
GroupCode 136, 152
HasBeenDeleted 136
HasBeenRead 136
HasContainers 146, 148, 177, 179, 184
HasFiles 146, 148, 177, 179, 184
ID 136, 139, 143, 150, 152, 154, 158, 161,
164, 166, 169, 172, 181
InitiallyStale 156
IsArchive 140, 146, 148, 175, 177, 179

IsAvailable 162, 169, 172, 181

IsBase 150

IsBEOption 150

IsClusterOption 150

IsClusterOwned 143

IsCompressed 140, 147, 148, 175, 177, 179

IsContainer 141, 147, 148, 175, 177, 179,

184

IsDemo 150

IsEncrypted 141, 147, 148, 175, 177, 179

IsExclude 166

IsExpired 150

IsHidden 141, 147, 148, 175, 177, 179

IsNBUOption 150

IsNFR 150

IsOffline 141, 147, 148, 175, 177, 179

IsOnline 169, 172, 181

IsPairDisabled 158

IsPermanent 150

IsReadOnly 141, 148, 175, 179, 184

IsRecursive 167

IsReparsePoint 141, 148, 175, 179

IsRunAsynch 164

IsSiteLicense 150

IsSource 164

IsSparseFile 141, 148, 175, 179

IsStale 169, 172, 181

IsSyncedWithJCD 143

IsSystem 141, 147, 149, 175, 177, 179

IsTemporary 141, 149, 175, 179

IsVolume 147, 149, 177, 179, 184

JCDServerID 143

JCDServerName 143

JobState 143

LastAddedOperationRequest 143

LastAlertDateTime 169, 172, 181

LastAlertSequenceNumber 169, 172, 181

LastKnownRmsPairJobInstance 158

LastStarted 143

LicenseEndDate 150

LicenseKeyString 150

LicenseProductID 150

LicenseProductName 150

LicenseTimeLeft 150

LogBlob 152

MaintenancePackVersion 162, 169, 172,

181

MajorBuildNumber 162, 169, 172, 181

MajorProductVersion 162, 169, 172, 181

Index 285

MappingMethod 143

MessageText 136, 152

MinorBuildNumber 162, 169, 172, 181

MinorProductVersion 162, 170, 173, 181

Modified 141, 147, 149, 162, 170, 173, 175,

177, 179, 181, 184

Name 139, 141, 144, 147, 149, 153, 155,

156, 158, 162, 165, 167, 170, 173, 175, 177,

179, 181, 184

NameSpec 167

NetMaxKbitsPerSecond 158

NextPendingOperationRequest 144

NoChgsOnTarget 144

NoDynamicJournal 144

NoRally 158

NoRallyAutoReset 158

OrdinalValue 153, 156

OrigServerID 136

OrigServerName 136

OSBuildNumber 162, 170, 173, 181

OSClass 162, 170, 173, 182

OSMajorVersion 162, 170, 173, 182

OSMinorVersion 162, 170, 173, 182

OSRevisionNumber 162, 170, 173, 182

OSServicePackMajor 162, 170, 173, 182

OSServicePackMinor 162, 170, 173, 182

OSVersion 170, 173, 182

OSWindowsSubType 163, 170, 173, 182

OwnerID 139, 144, 151, 152, 155, 158, 165,

167

PairCount 144

PatchVersion 163, 170, 173, 182

PendingUpdateCount 144

Prescan 144

RealTime 144

RequiredToCreate 157

ResyncPctComplete 159

Resyncs 159

RMSGatewayAddress 163

RunStage 159

RunState 159

ScannedObjectTally 159

Schedule 144

ScheduledStopsCancel 145

SequenceNumber 152

ServerName 141, 147, 149, 175, 177, 179,

184

Severity 136

Size 141, 175

SortOrder 167

SourceServer 155

SourceServerID 155, 159

SpecialBuildString 163, 170, 173, 182

StatusCode 152

SyncReportFilenames 145

TargetMappingPrefix 159

TargetReplicaType 145

TargetServer 139, 159

TargetServerID 139, 159

TextID 136, 152

Throttle 159

Timeout 165

TimeStamp 136, 152

TimeTilSyncDone 160

TimeToKeepAlerts 170, 174, 182

TimeToKeepLogItems 163, 171, 174, 182

TotalBytesSent 160

TransferRate 160

TriggeringEvent 165

Type 145

UNCPath 139, 155

WhenStageStarted 160

object reference 135
object specifications

changes with VRE 3.1 4
objectCount parameter 74
objectKind object 153
objectKind parameter 74, 100, 123
objects

alert 135

changes with VRE 3.1 6

creating 66

credential(s) 137

deleting 66

destinationRule 138

destRule(s), see destination Rule object

discovering 65

discovery commands, summary of 27

file(s) 140

fileReplicationJob 142

files, see file object

folder(s) 146

heirarchy

old 64
item(s) 148
job(s), see fileReplicationJob object
license(s) 149
logEntries, see logEntry object
286 srTool Reference Guide

logEntry 151

objectKind(s) 153

pair(s), see replicationPair object

pathRule(s) 154

properties

access types
constant 66
description 66
mutable 66
read-only 66

description 66
property 156
replicationPair(s) 157
RMS 161
root-level, description, description 65
rule(s), see pathRule object
script(s) 164
selRule(s), see selectionRule object
server(s) 168
sourceserver 171
specifications

description 67
example 68

subFile(s) 174
subFolder(s) 176
subItem(s) 178
targetserver 180
vol(s), see volume object
volume(s) 183

operators
and 54
as 55
binary 54
classification 54
contains 54
description 54
dividedBy 54
endsWith 54
eq 54
ge 55
gt 55
le 54
lt 54
minus 54
mod 54
multiplyBy 54
ne 54
negate 54
not 54

or 54
plus 54
raisedTo 54
startsWith 54
terms 51
unary 54
xor 54

output redirection 30
example 31

overview, srTool 1
OwnerID object property 139, 155

P
PairCount object property 144
parameter variables 49

param0 49
param1 49
paramCount 49

parameters
andExpression 110
anything 92, 97
argumentVariableName 101
command 125
componentName 84
compoundObjectSpec 74, 81, 86, 87, 88, 89,
91, 95, 107, 113, 114, 115, 116, 117, 119,
128, 129, 130, 133
configParamList 84
constParameter 79, 99, 126
countExpression 121
expression 92, 94, 99, 103, 106, 117, 119,
120, 125, 132, 133
expressionList 110
expressions 79
fileOrFolderObjectSpec 82
filePathString 78, 98, 125
functionName 87, 101
identifierName 103
incrExpression 110
indexingSpec 113
jobObjectSpec 82
objectCount 74
objectKind 74, 100, 123
propertyAssignmentList 74
propertyList 107
propertyName 119, 123
startExpression 110
timeExpression 132
topic 105
Index 287

variableName 87, 119

pathRule(s) object 154

pause command 114

PendingUpdateCount object property 144

Prescan object property 144

progressPolling variable 44

promote command 114

promptString variable 44

properties

discovering 67

objects 66

property object 156

property specification

description 55

values 55

property values

modifying 67

querying 67

propertyAssignmentList parameter 74

propertyList parameter 107

propertyName parameter 119, 123

Q

q command, see quit command 115

quit command 115

R
readme file 1

RealTime object property 144

recordDelimiter variable 45

rem command, see comment command 83

remark command, see comment

command 83

remoteFiltering variable 45

remoteSorting variable 45

repeat command, see loop command 109

replicationPair(s) object 157

resume command 116

ResyncPctComplete object property 159

Resyncs object property 159

RMS object 161

root-level objects 65

RunStage object property 159

RunState object property 159

S
ScannedObjectTally object property 159

Schedule object property 144

ScheduledStopsCancel object property 145

scoping rules, variables 41

script(s) objects 164

select command 117

selection rule-specific commands, summary

of 28

selectionRule(s) objects

objects

selectionRule(s) 166

server(s) objects 168

server-specific commands, summary of 27

set command 118

shared class error messages 188

shell command 120

ShellID variable 45

shift command 121

show command 122

sobTyple variable 46

sortedBy clause

description 71

examples 71

spawn command 124

specifications

compound object 72

grouping 68

indexing 70

srTool

capabilities 1

changes for VRE 3.1 2

compatibility with prior versions 1

documentation, most current 1

error messages 243

help features 9

launching 9

overview 1

srTool for VRE 3.1
changes

commands 5

constants (literals) 2

data types 2

embedded commands 5

execution control structures 4

expressions 4

functions 5

macros 5

object specifications 4

objects 6

variables 3

srtool.exe 9

standard output redirection 30

start command 127

288 srTool Reference Guide

startExpression parameter 110

stop command 128

string

constant 38
data type 32
escape sequences 38

subFile(s) objects 174

subFolder(s) objects 176

subItem(s) objects 178

SyncReportFilenames object property 145

syntax

basic command 26

T
TargetMappingPrefix object property 159
TargetReplicaType object property 145
TargetReplicaType property values 47
TargetServer object property 139, 159
TargetServerID object property 139, 159
terms

description 51
operators 51

TextID object property 136, 152
Throttle object property 159
timeExpression parameter 132
timeSpan

converting from a string 36
data type 32

TimeStamp object property 136, 152
TimeTilSyncDone object property 160
topic parameter 105
TotalBytesSent object property 160
TransferRate object property 160
TriggeringEvent object property 165
troubleshooting 187
Type object property 145

U
uint32

constant 40
data type 32

uint64
constant 40
data type 32

unary operators
description 54

UNCPath object property 139, 155
uniqueID

constant 39
converting from a string 34
data type 32

use command 129
User Guide, VRE 3.1 1
user proficiency 1

V
variableName parameter 87, 119
variables

built-in 43

changes with VRE 3.1 3

changing 42

creating 42

deleting 42

description 41

discovery 42

examples 41

execution contexts 41

global 41, 46

ClusterType property values 48
JobState property value 46
JobType property values 47
MappingMethod property values 48
TargetReplicaType property
values 47

parameter 49
scoping rules 41

verbose variable 46
VERITAS Replication Exec User Guide 1
volume(s) objects 183
VRE 3.1

changes to srTool 2

W
wait command 131
whenShellStarted variable 46
whose clause

description 71
example 72

X
xml command 133
Index 289

290 srTool Reference Guide

	srTool Reference Guide
	Document Release Notice
	What You’ll Find in this Guide
	Getting Help
	Replication Exec Documentation Set
	Conventions
	Syntax Conventions
	Typographical Conventions
	Tips, Notes, and Cautions

	Introduction
	Upgrading from Prior Versions
	Current Documentation
	User Proficiency
	Summary of Changes to srTool for VRE 3.1
	Data Types
	Constants (Literals)
	Variables
	Expressions
	Object Specifications
	Execution Control Structures
	Functions
	Macros and Embedded Commands
	Commands
	New Commands
	Changed Commands

	Objects
	Prior Object Hierarchy
	Changed Objects
	New Objects

	srTool Help
	Launching the srTool Utility

	Getting Started Using srTool
	Creating and Modifying Replication Jobs
	Example 1. Create a Standard (One-to-One) Job
	Example 2. Create a Centralization (Many-to-One) Job
	Example 3. Modify the Centralization (Many-to-One) Job
	Example 4. Create a Publication (One-to-Many) Job

	Monitoring, Querying and Reporting Job Status
	Example 5. Monitor Jobs
	Example 6. Query for Server Storage Information
	Example 7. Groom/Read/Summarize Logs and Alerts

	Language Reference
	Starting srTool
	Command Line Syntax
	Required Parameters
	Optional Parameters

	Basic Command Syntax
	Command Summary
	Object Discovery, Creation, Deletion and Changing Commands
	Server-Specific Commands
	Job-Specific Commands
	SelectionRule (selRule)-Specific Commands
	Flow Control Commands
	Other Commands

	Output Redirection
	Data Types
	Converting Between Different Data Types
	Converting a String into a Blob
	Converting a String into a UniqueID
	Converting a String into a DateTime
	Converting a String into a TimeSpan

	Constants (Literals)
	string
	blob (byteArray)
	uniqueID
	uint32
	uint64
	float
	‘as’ operator

	Variables
	Syntax
	Execution Contexts
	Variable Discovery
	Creating Variables
	Changing Variables
	Deleting Variables

	Built-in Variables
	Global Variables

	Parameter Variables

	Expressions
	Terms
	Factors
	Operators
	Property Specifications

	Functions
	Macros and Embedded Commands
	Macros
	Embedded Commands

	Objects
	srTool Object Hierarchy
	Root-Level Objects
	Discovering Objects
	Creating New Objects
	Deleting Objects

	Object Properties
	Access Types
	Querying Property Values
	Modifying Property Values
	Discovering Properties

	Object Specifications
	Grouping Specifications
	Indexing Specifications
	SortedBy Clause
	Whose Clause
	Compound Object Specifications

	srTool Command Reference
	add command
	begin command
	break command
	call command
	cancel command
	check command
	comment command
	configure command
	continue command
	count command
	delete command
	demote command
	disable command
	dump command
	echo command
	else command
	elseif command
	enable command
	end command
	exec command
	flush command
	function command
	global command
	help command
	if command
	list command
	loop command
	monitor command
	pause command
	promote command
	quit command
	resume command
	select command
	set command
	shell command
	shift command
	show command
	spawn command
	start command
	stop command
	use command
	wait command
	xml command

	srTool Object Reference
	Alert Objects
	Credential Objects
	DestinationRule Objects
	File Objects
	FileReplicationJob Objects
	Folder Objects
	Item Objects
	License Objects
	LogEntry Objects
	ObjectKind Objects
	PathRule Objects
	Property Objects
	ReplicationPair Objects
	RMS Objects
	Script Objects
	SelectionRule Objects
	Server Objects
	SourceServer Objects
	SubFile Objects
	SubFolder Objects
	SubItem Objects
	TargetServer Objects
	Volume Objects
	A

	Shared Classes Library Messages
	High-Level Client Interface Messages
	srTool Messages

